March  2018, 7(1): 61-77. doi: 10.3934/eect.2018004

Inverse observability inequalities for integrodifferential equations in square domains

Dipartimento di Scienze di Base e Applicate per l'Ingegneria, Sapienza Università di Roma, Via Antonio Scarpa 16,00161 Roma, Italy

* Corresponding author: Daniela Sforza.

Received  January 2017 Revised  September 2017 Published  January 2018

In this paper we will consider oscillations of square viscoelastic membranes by adding to the wave equation another term, which takes into account the memory. To this end, we will study a class of integrodifferential equations in square domains. By using accurate estimates of the spectral properties of the integrodifferential operator, we will prove an inverse observability inequality.

Citation: Paola Loreti, Daniela Sforza. Inverse observability inequalities for integrodifferential equations in square domains. Evolution Equations & Control Theory, 2018, 7 (1) : 61-77. doi: 10.3934/eect.2018004
References:
[1]

C. BardosG. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary, SIAM J. Control Optim., 30 (1992), 1024-1065.  doi: 10.1137/0330055.  Google Scholar

[2]

C. M. Dafermos, Asymptotic stability in viscoelasticity, Arch. Rational Mech. Anal., 37 (1970), 297-308.  doi: 10.1007/BF00251609.  Google Scholar

[3]

C. M. Dafermos, An abstract Volterra equation with applications to linear viscoelasticity, J. Differential Equations, 7 (1970), 554-569.  doi: 10.1016/0022-0396(70)90101-4.  Google Scholar

[4]

A. E. Ingham, Some trigonometrical inequalities with applications to the theory of series, Math. Z., 41 (1936), 367-379.  doi: 10.1007/BF01180426.  Google Scholar

[5]

J. U. Kim, Control of a second-order integro-differential equation, SIAM J. Control Optim., 31 (1993), 101-110.  doi: 10.1137/0331008.  Google Scholar

[6]

V. Komornik and P. Loreti, Fourier Series in Control Theory Springer Monogr. Math., Springer-Verlag, New York, 2005. doi: 10.1007/b139040.  Google Scholar

[7]

V. Komornik and P. Loreti, Observability of rectangular membranes and plates on small sets, Evol. Equ. Control Theory, 3 (2014), 287-304.  doi: 10.3934/eect.2014.3.287.  Google Scholar

[8]

V. Komornik and P. Loreti, Observability of square membranes by Fourier series methods, Bulletin SUSU MMCS, 8 (2015), 127-140.  doi: 10.14529/mmp150308.  Google Scholar

[9]

G. LebonC. Perez-Garcia and J. Casas-Vazquez, On the thermodynamic foundations of viscoelasticity, J. Chem. Phys., 88 (1988), 5068-5075.  doi: 10.1063/1.454660.  Google Scholar

[10]

J.-L. Lions, Exact controllability, stabilizability, and perturbations for distributed systems, Siam Rev., 30 (1988), 1-68.  doi: 10.1137/1030001.  Google Scholar

[11]

P. Loreti and D. Sforza, Exact reachability for second order integro-differential equations, C. R. Math. Acad. Sci. Paris, 347 (2009), 1153-1158.  doi: 10.1016/j.crma.2009.08.007.  Google Scholar

[12]

P. Loreti and D. Sforza, Reachability problems for a class of integro-differential equations, J. Differential Equations, 248 (2010), 1711-1755.  doi: 10.1016/j.jde.2009.09.016.  Google Scholar

[13]

P. Loreti and D. Sforza, Multidimensional controllability problems with memory, in Modern Aspects of the Theory of Partial Differential Equations (eds. M. Ruzhansky and J. Wirth), Operator Theory: Advances and Applications 216, Birkhäuser/Springer, Basel, (2011), 261-274. doi: 10.1007/978-3-0348-0069-3_15.  Google Scholar

[14]

M. Mehrenberger, An Ingham type proof for the boundary observability of a $N$-d wave equation, C. R. Math. Acad. Sci. Paris, 347 (2009), 63-68.  doi: 10.1016/j.crma.2008.11.002.  Google Scholar

[15]

J. Prüss, Evolutionary Integral Equations and Applications Monographs in Mathematics, 87 Birkhäuser Verlag, Basel, 1993. doi: 10. 1007/978-3-0348-8570-6.  Google Scholar

[16]

M. Renardy, W. J. Hrusa and J. A. Nohel, Mathematical Problems in Viscoelasticity Pitman Monogr. Pure Appl. Math., 35 Longman Sci. Tech., Harlow, Essex, 1987.  Google Scholar

[17]

M. Renardy, Are viscoelastic flows under control or out of control?, Systems Control Lett., 54 (2005), 1183-1193.  doi: 10.1016/j.sysconle.2005.04.006.  Google Scholar

show all references

References:
[1]

C. BardosG. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary, SIAM J. Control Optim., 30 (1992), 1024-1065.  doi: 10.1137/0330055.  Google Scholar

[2]

C. M. Dafermos, Asymptotic stability in viscoelasticity, Arch. Rational Mech. Anal., 37 (1970), 297-308.  doi: 10.1007/BF00251609.  Google Scholar

[3]

C. M. Dafermos, An abstract Volterra equation with applications to linear viscoelasticity, J. Differential Equations, 7 (1970), 554-569.  doi: 10.1016/0022-0396(70)90101-4.  Google Scholar

[4]

A. E. Ingham, Some trigonometrical inequalities with applications to the theory of series, Math. Z., 41 (1936), 367-379.  doi: 10.1007/BF01180426.  Google Scholar

[5]

J. U. Kim, Control of a second-order integro-differential equation, SIAM J. Control Optim., 31 (1993), 101-110.  doi: 10.1137/0331008.  Google Scholar

[6]

V. Komornik and P. Loreti, Fourier Series in Control Theory Springer Monogr. Math., Springer-Verlag, New York, 2005. doi: 10.1007/b139040.  Google Scholar

[7]

V. Komornik and P. Loreti, Observability of rectangular membranes and plates on small sets, Evol. Equ. Control Theory, 3 (2014), 287-304.  doi: 10.3934/eect.2014.3.287.  Google Scholar

[8]

V. Komornik and P. Loreti, Observability of square membranes by Fourier series methods, Bulletin SUSU MMCS, 8 (2015), 127-140.  doi: 10.14529/mmp150308.  Google Scholar

[9]

G. LebonC. Perez-Garcia and J. Casas-Vazquez, On the thermodynamic foundations of viscoelasticity, J. Chem. Phys., 88 (1988), 5068-5075.  doi: 10.1063/1.454660.  Google Scholar

[10]

J.-L. Lions, Exact controllability, stabilizability, and perturbations for distributed systems, Siam Rev., 30 (1988), 1-68.  doi: 10.1137/1030001.  Google Scholar

[11]

P. Loreti and D. Sforza, Exact reachability for second order integro-differential equations, C. R. Math. Acad. Sci. Paris, 347 (2009), 1153-1158.  doi: 10.1016/j.crma.2009.08.007.  Google Scholar

[12]

P. Loreti and D. Sforza, Reachability problems for a class of integro-differential equations, J. Differential Equations, 248 (2010), 1711-1755.  doi: 10.1016/j.jde.2009.09.016.  Google Scholar

[13]

P. Loreti and D. Sforza, Multidimensional controllability problems with memory, in Modern Aspects of the Theory of Partial Differential Equations (eds. M. Ruzhansky and J. Wirth), Operator Theory: Advances and Applications 216, Birkhäuser/Springer, Basel, (2011), 261-274. doi: 10.1007/978-3-0348-0069-3_15.  Google Scholar

[14]

M. Mehrenberger, An Ingham type proof for the boundary observability of a $N$-d wave equation, C. R. Math. Acad. Sci. Paris, 347 (2009), 63-68.  doi: 10.1016/j.crma.2008.11.002.  Google Scholar

[15]

J. Prüss, Evolutionary Integral Equations and Applications Monographs in Mathematics, 87 Birkhäuser Verlag, Basel, 1993. doi: 10. 1007/978-3-0348-8570-6.  Google Scholar

[16]

M. Renardy, W. J. Hrusa and J. A. Nohel, Mathematical Problems in Viscoelasticity Pitman Monogr. Pure Appl. Math., 35 Longman Sci. Tech., Harlow, Essex, 1987.  Google Scholar

[17]

M. Renardy, Are viscoelastic flows under control or out of control?, Systems Control Lett., 54 (2005), 1183-1193.  doi: 10.1016/j.sysconle.2005.04.006.  Google Scholar

Figure 1.  Plot of the function $\beta\to\Lambda^{+}_{11}(\beta)+\Lambda^{-}_{11}(\beta)$
[1]

Michael Ruzhansky, Jens Wirth. Dispersive type estimates for fourier integrals and applications to hyperbolic systems. Conference Publications, 2011, 2011 (Special) : 1263-1270. doi: 10.3934/proc.2011.2011.1263

[2]

Vilmos Komornik, Gérald Tenenbaum. An Ingham--Müntz type theorem and simultaneous observation problems. Evolution Equations & Control Theory, 2015, 4 (3) : 297-314. doi: 10.3934/eect.2015.4.297

[3]

Michel Potier-Ferry, Foudil Mohri, Fan Xu, Noureddine Damil, Bouazza Braikat, Khadija Mhada, Heng Hu, Qun Huang, Saeid Nezamabadi. Cellular instabilities analyzed by multi-scale Fourier series: A review. Discrete & Continuous Dynamical Systems - S, 2016, 9 (2) : 585-597. doi: 10.3934/dcdss.2016013

[4]

Jiecheng Chen, Dashan Fan, Lijing Sun. Asymptotic estimates for unimodular Fourier multipliers on modulation spaces. Discrete & Continuous Dynamical Systems - A, 2012, 32 (2) : 467-485. doi: 10.3934/dcds.2012.32.467

[5]

Philippe Chartier, Ander Murua, Jesús María Sanz-Serna. A formal series approach to averaging: Exponentially small error estimates. Discrete & Continuous Dynamical Systems - A, 2012, 32 (9) : 3009-3027. doi: 10.3934/dcds.2012.32.3009

[6]

Jan-Cornelius Molnar. On two-sided estimates for the nonlinear Fourier transform of KdV. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 3339-3356. doi: 10.3934/dcds.2016.36.3339

[7]

Barbara Brandolini, Francesco Chiacchio, Jeffrey J. Langford. Estimates for sums of eigenvalues of the free plate via the fourier transform. Communications on Pure & Applied Analysis, 2020, 19 (1) : 113-122. doi: 10.3934/cpaa.2020007

[8]

Gerard Gómez, Josep–Maria Mondelo, Carles Simó. A collocation method for the numerical Fourier analysis of quasi-periodic functions. II: Analytical error estimates. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 75-109. doi: 10.3934/dcdsb.2010.14.75

[9]

D. Bartolucci, L. Orsina. Uniformly elliptic Liouville type equations: concentration compactness and a priori estimates. Communications on Pure & Applied Analysis, 2005, 4 (3) : 499-522. doi: 10.3934/cpaa.2005.4.499

[10]

Yutian Lei. Wolff type potential estimates and application to nonlinear equations with negative exponents. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 2067-2078. doi: 10.3934/dcds.2015.35.2067

[11]

Feiyao Ma, Lihe Wang. Schauder type estimates of linearized Mullins-Sekerka problem. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1037-1050. doi: 10.3934/cpaa.2012.11.1037

[12]

Y. Efendiev, Alexander Pankov. Meyers type estimates for approximate solutions of nonlinear elliptic equations and their applications. Discrete & Continuous Dynamical Systems - B, 2006, 6 (3) : 481-492. doi: 10.3934/dcdsb.2006.6.481

[13]

Steve Hofmann, Dorina Mitrea, Marius Mitrea, Andrew J. Morris. Square function estimates in spaces of homogeneous type and on uniformly rectifiable Euclidean sets. Electronic Research Announcements, 2014, 21: 8-18. doi: 10.3934/era.2014.21.8

[14]

Jiakun Liu, Neil S. Trudinger. On Pogorelov estimates for Monge-Ampère type equations. Discrete & Continuous Dynamical Systems - A, 2010, 28 (3) : 1121-1135. doi: 10.3934/dcds.2010.28.1121

[15]

Chiun-Chuan Chen, Chang-Shou Lin. Mean field equations of Liouville type with singular data: Sharper estimates. Discrete & Continuous Dynamical Systems - A, 2010, 28 (3) : 1237-1272. doi: 10.3934/dcds.2010.28.1237

[16]

Gary M. Lieberman. Schauder estimates for singular parabolic and elliptic equations of Keldysh type. Discrete & Continuous Dynamical Systems - B, 2016, 21 (5) : 1525-1566. doi: 10.3934/dcdsb.2016010

[17]

Weisong Dong, Tingting Wang, Gejun Bao. A priori estimates for the obstacle problem of Hessian type equations on Riemannian manifolds. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1769-1780. doi: 10.3934/cpaa.2016013

[18]

Lijuan Wang, Weike Wang. Pointwise estimates of solutions to conservation laws with nonlocal dissipation-type terms. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2835-2854. doi: 10.3934/cpaa.2019127

[19]

Armengol Gasull, Francesc Mañosas. Subseries and signed series. Communications on Pure & Applied Analysis, 2019, 18 (1) : 479-492. doi: 10.3934/cpaa.2019024

[20]

Vilmos Komornik, Bernadette Miara. Cross-like internal observability of rectangular membranes. Evolution Equations & Control Theory, 2014, 3 (1) : 135-146. doi: 10.3934/eect.2014.3.135

2018 Impact Factor: 1.048

Metrics

  • PDF downloads (123)
  • HTML views (336)
  • Cited by (0)

Other articles
by authors

[Back to Top]