March  2018, 7(1): 79-93. doi: 10.3934/eect.2018005

Stability problem for the age-dependent predator-prey model

1. 

Faculty of Mathematics and Computer Science, Jagiellonian University, ul. Łojasiewicza 6, 30-348 Kraków, Poland

2. 

Faculty of Computer Science, Bialystok University of Technology, ul. Wiejska 45A, 15-351 Białystok, Poland

* Corresponding author: Anna Poskrobko, a.poskrobko@pb.edu.pl.

Received  December 2016 Revised  July 2017 Published  January 2018

Fund Project: The contribution of Anna Poskrobko was supported by the Bialystok University of Technology grant S/WI/1/2016 and founded by the resources for research by Ministry of Science and Higher Education.

The paper deals with the age-dependent model which is a generalization of the classical Lotka-Volterra model. Age structure of both species, predators and preys is concerned. The model is based on the system of partial differential and integro-differential equations. We study the existence and uniqueness of the solution for the considered population problem. The stability problem for trivial stationary solution of the model is also proved.

Citation: Antoni Leon Dawidowicz, Anna Poskrobko. Stability problem for the age-dependent predator-prey model. Evolution Equations & Control Theory, 2018, 7 (1) : 79-93. doi: 10.3934/eect.2018005
References:
[1]

N. C. Apreutesei, Necessary optimality conditions for a Lotka-Volterra three species system, Math. Model. Nat. Phenom., 1 (2006), 123-135.   Google Scholar

[2]

N. C. Apreutesei, Necessary optimality conditions for predator-prey system with a hunter population, Opuscula Math., 30 (2010), 389-397.  doi: 10.7494/OpMath.2010.30.4.389.  Google Scholar

[3]

N. Bairagi and D. Jana, Age-structured predator-prey model with habitat complexity: Oscillations and control, Dyn. Syst., 27 (2012), 475-499.  doi: 10.1080/14689367.2012.723678.  Google Scholar

[4]

A. Bielecki, Une remarque sur la méthode de Banach -Caciopoli -Tikhonov dans la théorie des équations différentielles ordinaires, Bull. Acad. Polon. Sci. Cl. Ⅲ., 4 (1956), 261-264.   Google Scholar

[5]

S. Busenberg and M. Iannelli, Separable models in age-dependent population-dynamics, J. Math. Biol., 22 (1985), 145-173.  doi: 10.1007/BF00275713.  Google Scholar

[6]

L. M. Cai, X. Z. Li, X. Y. Song and J. Y. Yu, Permanence and stability of an age-structured prey-predator system with delays, Discrete Dynam. Nat. Soc., 2007 (2007), Art. ID 54861, 15 pp.  Google Scholar

[7]

J. M. Cushing and M. Saleem, A predator prey model with age structure, J. Math. Biol., 14 (1982), 231-250.  doi: 10.1007/BF01832847.  Google Scholar

[8]

A. L. Dawidowicz and A. Poskrobko, Age-dependent single-species population dynamics with delayed argument, Math. Methods Appl. Sci., 33 (2010), 1122-1135.   Google Scholar

[9]

A. L. DawidowiczA. Poskrobko and J. L. Zalasiński, On the age-dependent predator-prey model, Appl. Math., 38 (2011), 453-467.  doi: 10.4064/am38-4-4.  Google Scholar

[10]

M. DelgadoM. Molina-Becerra and A. Suárez, Analysis of an age-structured predator-prey model with disease in the prey, Nonlinear Anal. Real World Appl., 7 (2006), 853-871.  doi: 10.1016/j.nonrwa.2005.03.031.  Google Scholar

[11]

M. Delgado and A. Suárez, Age-dependent diffusive Lotka-Volterra type system, Math. Comput. Modelling, 45 (2007), 668-680.  doi: 10.1016/j.mcm.2006.07.013.  Google Scholar

[12]

B. Dubey, A prey-predator model with a reserved area, Nonlinear Anal. Model. Control, 12 (2007), 479-494.   Google Scholar

[13]

M. Farkas, On the stability of stationary age distributions, Appl. Math. Comput., 131 (2002), 107-123.  doi: 10.1016/S0096-3003(01)00131-X.  Google Scholar

[14]

U. Foryś, Multi-dimensional Lotka-Volterra systems for carcinogenesis mutations, Math. Methods Appl. Sci., 32 (2009), 2287-2308.  doi: 10.1002/mma.1137.  Google Scholar

[15]

M. E. Gurtin and D. S. Levine, On predator-prey interactions with predation dependent on age of prey, Math. Biosci., 47 (1979), 207-219.  doi: 10.1016/0025-5564(79)90038-5.  Google Scholar

[16]

J. Li, Dynamics of age-structured predator-prey population model, J. Math. Anal. Appl., 152 (1990), 399-415.  doi: 10.1016/0022-247X(90)90073-O.  Google Scholar

[17]

Z. Liu and N. Li, Stability and bifurcation in a predator-prey model with age structure and delays, J. Nonlinear Sci., 25 (2015), 937-957.  doi: 10.1007/s00332-015-9245-x.  Google Scholar

[18]

A. G. McKendrick, Applications of mathematics to medical problems, Proc. Edinburgh Math. Soc., 44 (1925), 98-130.  doi: 10.1017/S0013091500034428.  Google Scholar

[19]

M. MohrM. V. Barbarossa and C. Kuttler, Predator-prey interactions, age structures and delay equations, Math. Model. Nat. Phenom., 9 (2014), 92-107.  doi: 10.1051/mmnp/20149107.  Google Scholar

[20]

M. Saleem, Predator-prey relationships: Indiscriminate predation, J. Math. Biol., 21 (1984), 25-34.  doi: 10.1007/BF00275220.  Google Scholar

[21]

M. Saleem and A. K. Tripathi, Asymptotic stability of linear and nonlinear model systems representing age-structured predator-prey interactions, Indian J. Pure Appl. Math., 31 (2000), 1195-1207.   Google Scholar

[22]

H. Tang and Z. Liu, Hopf bifurcation for a predator-prey model with age structure, Appl. Math. Model., 40 (2016), 726-737.  doi: 10.1016/j.apm.2015.09.015.  Google Scholar

[23]

E. Venturino, Age-structured predator-prey models, Math. Modelling, 5 (1984), 117-128.  doi: 10.1016/0270-0255(84)90020-4.  Google Scholar

[24]

V. Volterra, Variations and fluctuations of the number of individuals in animal species living together, ICES Journal of Marine Science,, 3 (1928), 3-51.  doi: 10.1093/icesjms/3.1.3.  Google Scholar

[25]

J. von Foerster, Some Remarks on Changing Populations In: The Kinetics of Cell Proliferation, Grune & Stratton, New York, 1959. Google Scholar

[26]

W. X. XuT. L. Zhangand and Z. B. Xu, Existence of positive periodic solutions of a prey-predator system with several delays, Acta Math. Sci. Ser. A Chinese Ed., 28 (2008), 39-45.   Google Scholar

show all references

References:
[1]

N. C. Apreutesei, Necessary optimality conditions for a Lotka-Volterra three species system, Math. Model. Nat. Phenom., 1 (2006), 123-135.   Google Scholar

[2]

N. C. Apreutesei, Necessary optimality conditions for predator-prey system with a hunter population, Opuscula Math., 30 (2010), 389-397.  doi: 10.7494/OpMath.2010.30.4.389.  Google Scholar

[3]

N. Bairagi and D. Jana, Age-structured predator-prey model with habitat complexity: Oscillations and control, Dyn. Syst., 27 (2012), 475-499.  doi: 10.1080/14689367.2012.723678.  Google Scholar

[4]

A. Bielecki, Une remarque sur la méthode de Banach -Caciopoli -Tikhonov dans la théorie des équations différentielles ordinaires, Bull. Acad. Polon. Sci. Cl. Ⅲ., 4 (1956), 261-264.   Google Scholar

[5]

S. Busenberg and M. Iannelli, Separable models in age-dependent population-dynamics, J. Math. Biol., 22 (1985), 145-173.  doi: 10.1007/BF00275713.  Google Scholar

[6]

L. M. Cai, X. Z. Li, X. Y. Song and J. Y. Yu, Permanence and stability of an age-structured prey-predator system with delays, Discrete Dynam. Nat. Soc., 2007 (2007), Art. ID 54861, 15 pp.  Google Scholar

[7]

J. M. Cushing and M. Saleem, A predator prey model with age structure, J. Math. Biol., 14 (1982), 231-250.  doi: 10.1007/BF01832847.  Google Scholar

[8]

A. L. Dawidowicz and A. Poskrobko, Age-dependent single-species population dynamics with delayed argument, Math. Methods Appl. Sci., 33 (2010), 1122-1135.   Google Scholar

[9]

A. L. DawidowiczA. Poskrobko and J. L. Zalasiński, On the age-dependent predator-prey model, Appl. Math., 38 (2011), 453-467.  doi: 10.4064/am38-4-4.  Google Scholar

[10]

M. DelgadoM. Molina-Becerra and A. Suárez, Analysis of an age-structured predator-prey model with disease in the prey, Nonlinear Anal. Real World Appl., 7 (2006), 853-871.  doi: 10.1016/j.nonrwa.2005.03.031.  Google Scholar

[11]

M. Delgado and A. Suárez, Age-dependent diffusive Lotka-Volterra type system, Math. Comput. Modelling, 45 (2007), 668-680.  doi: 10.1016/j.mcm.2006.07.013.  Google Scholar

[12]

B. Dubey, A prey-predator model with a reserved area, Nonlinear Anal. Model. Control, 12 (2007), 479-494.   Google Scholar

[13]

M. Farkas, On the stability of stationary age distributions, Appl. Math. Comput., 131 (2002), 107-123.  doi: 10.1016/S0096-3003(01)00131-X.  Google Scholar

[14]

U. Foryś, Multi-dimensional Lotka-Volterra systems for carcinogenesis mutations, Math. Methods Appl. Sci., 32 (2009), 2287-2308.  doi: 10.1002/mma.1137.  Google Scholar

[15]

M. E. Gurtin and D. S. Levine, On predator-prey interactions with predation dependent on age of prey, Math. Biosci., 47 (1979), 207-219.  doi: 10.1016/0025-5564(79)90038-5.  Google Scholar

[16]

J. Li, Dynamics of age-structured predator-prey population model, J. Math. Anal. Appl., 152 (1990), 399-415.  doi: 10.1016/0022-247X(90)90073-O.  Google Scholar

[17]

Z. Liu and N. Li, Stability and bifurcation in a predator-prey model with age structure and delays, J. Nonlinear Sci., 25 (2015), 937-957.  doi: 10.1007/s00332-015-9245-x.  Google Scholar

[18]

A. G. McKendrick, Applications of mathematics to medical problems, Proc. Edinburgh Math. Soc., 44 (1925), 98-130.  doi: 10.1017/S0013091500034428.  Google Scholar

[19]

M. MohrM. V. Barbarossa and C. Kuttler, Predator-prey interactions, age structures and delay equations, Math. Model. Nat. Phenom., 9 (2014), 92-107.  doi: 10.1051/mmnp/20149107.  Google Scholar

[20]

M. Saleem, Predator-prey relationships: Indiscriminate predation, J. Math. Biol., 21 (1984), 25-34.  doi: 10.1007/BF00275220.  Google Scholar

[21]

M. Saleem and A. K. Tripathi, Asymptotic stability of linear and nonlinear model systems representing age-structured predator-prey interactions, Indian J. Pure Appl. Math., 31 (2000), 1195-1207.   Google Scholar

[22]

H. Tang and Z. Liu, Hopf bifurcation for a predator-prey model with age structure, Appl. Math. Model., 40 (2016), 726-737.  doi: 10.1016/j.apm.2015.09.015.  Google Scholar

[23]

E. Venturino, Age-structured predator-prey models, Math. Modelling, 5 (1984), 117-128.  doi: 10.1016/0270-0255(84)90020-4.  Google Scholar

[24]

V. Volterra, Variations and fluctuations of the number of individuals in animal species living together, ICES Journal of Marine Science,, 3 (1928), 3-51.  doi: 10.1093/icesjms/3.1.3.  Google Scholar

[25]

J. von Foerster, Some Remarks on Changing Populations In: The Kinetics of Cell Proliferation, Grune & Stratton, New York, 1959. Google Scholar

[26]

W. X. XuT. L. Zhangand and Z. B. Xu, Existence of positive periodic solutions of a prey-predator system with several delays, Acta Math. Sci. Ser. A Chinese Ed., 28 (2008), 39-45.   Google Scholar

[1]

Linlin Li, Bedreddine Ainseba. Large-time behavior of matured population in an age-structured model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2561-2580. doi: 10.3934/dcdsb.2020195

[2]

Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301

[3]

Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175

[4]

Guo-Bao Zhang, Ruyun Ma, Xue-Shi Li. Traveling waves of a Lotka-Volterra strong competition system with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 587-608. doi: 10.3934/dcdsb.2018035

[5]

Dan Wei, Shangjiang Guo. Qualitative analysis of a Lotka-Volterra competition-diffusion-advection system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2599-2623. doi: 10.3934/dcdsb.2020197

[6]

Juan Manuel Pastor, Javier García-Algarra, Javier Galeano, José María Iriondo, José J. Ramasco. A simple and bounded model of population dynamics for mutualistic networks. Networks & Heterogeneous Media, 2015, 10 (1) : 53-70. doi: 10.3934/nhm.2015.10.53

[7]

Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089

[8]

Yunfei Lv, Rong Yuan, Yuan He. Wavefronts of a stage structured model with state--dependent delay. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 4931-4954. doi: 10.3934/dcds.2015.35.4931

[9]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

[10]

Wen-Bin Yang, Yan-Ling Li, Jianhua Wu, Hai-Xia Li. Dynamics of a food chain model with ratio-dependent and modified Leslie-Gower functional responses. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2269-2290. doi: 10.3934/dcdsb.2015.20.2269

[11]

Jan Prüss, Laurent Pujo-Menjouet, G.F. Webb, Rico Zacher. Analysis of a model for the dynamics of prions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 225-235. doi: 10.3934/dcdsb.2006.6.225

[12]

Johannes Kellendonk, Lorenzo Sadun. Conjugacies of model sets. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3805-3830. doi: 10.3934/dcds.2017161

[13]

Didier Bresch, Thierry Colin, Emmanuel Grenier, Benjamin Ribba, Olivier Saut. A viscoelastic model for avascular tumor growth. Conference Publications, 2009, 2009 (Special) : 101-108. doi: 10.3934/proc.2009.2009.101

[14]

Ondrej Budáč, Michael Herrmann, Barbara Niethammer, Andrej Spielmann. On a model for mass aggregation with maximal size. Kinetic & Related Models, 2011, 4 (2) : 427-439. doi: 10.3934/krm.2011.4.427

[15]

Martin Bohner, Sabrina Streipert. Optimal harvesting policy for the Beverton--Holt model. Mathematical Biosciences & Engineering, 2016, 13 (4) : 673-695. doi: 10.3934/mbe.2016014

[16]

Chin-Chin Wu. Existence of traveling wavefront for discrete bistable competition model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 973-984. doi: 10.3934/dcdsb.2011.16.973

[17]

Alba Málaga Sabogal, Serge Troubetzkoy. Minimality of the Ehrenfest wind-tree model. Journal of Modern Dynamics, 2016, 10: 209-228. doi: 10.3934/jmd.2016.10.209

[18]

Raghda A. M. Attia, Dumitru Baleanu, Dianchen Lu, Mostafa M. A. Khater, El-Sayed Ahmed. Computational and numerical simulations for the deoxyribonucleic acid (DNA) model. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021018

[19]

Seung-Yeal Ha, Jinwook Jung, Jeongho Kim, Jinyeong Park, Xiongtao Zhang. A mean-field limit of the particle swarmalator model. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021011

[20]

Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183

2019 Impact Factor: 0.953

Metrics

  • PDF downloads (262)
  • HTML views (497)
  • Cited by (1)

Other articles
by authors

[Back to Top]