-
Previous Article
Optimal control for a conserved phase field system with a possibly singular potential
- EECT Home
- This Issue
-
Next Article
Inverse observability inequalities for integrodifferential equations in square domains
Stability problem for the age-dependent predator-prey model
1. | Faculty of Mathematics and Computer Science, Jagiellonian University, ul. Łojasiewicza 6, 30-348 Kraków, Poland |
2. | Faculty of Computer Science, Bialystok University of Technology, ul. Wiejska 45A, 15-351 Białystok, Poland |
The paper deals with the age-dependent model which is a generalization of the classical Lotka-Volterra model. Age structure of both species, predators and preys is concerned. The model is based on the system of partial differential and integro-differential equations. We study the existence and uniqueness of the solution for the considered population problem. The stability problem for trivial stationary solution of the model is also proved.
References:
[1] |
N. C. Apreutesei,
Necessary optimality conditions for a Lotka-Volterra three species system, Math. Model. Nat. Phenom., 1 (2006), 123-135.
|
[2] |
N. C. Apreutesei,
Necessary optimality conditions for predator-prey system with a hunter population, Opuscula Math., 30 (2010), 389-397.
doi: 10.7494/OpMath.2010.30.4.389. |
[3] |
N. Bairagi and D. Jana,
Age-structured predator-prey model with habitat complexity: Oscillations and control, Dyn. Syst., 27 (2012), 475-499.
doi: 10.1080/14689367.2012.723678. |
[4] |
A. Bielecki,
Une remarque sur la méthode de Banach -Caciopoli -Tikhonov dans la théorie des équations différentielles ordinaires, Bull. Acad. Polon. Sci. Cl. Ⅲ., 4 (1956), 261-264.
|
[5] |
S. Busenberg and M. Iannelli,
Separable models in age-dependent population-dynamics, J. Math. Biol., 22 (1985), 145-173.
doi: 10.1007/BF00275713. |
[6] |
L. M. Cai, X. Z. Li, X. Y. Song and J. Y. Yu, Permanence and stability of an age-structured prey-predator system with delays,
Discrete Dynam. Nat. Soc., 2007 (2007), Art. ID 54861, 15 pp. |
[7] |
J. M. Cushing and M. Saleem,
A predator prey model with age structure, J. Math. Biol., 14 (1982), 231-250.
doi: 10.1007/BF01832847. |
[8] |
A. L. Dawidowicz and A. Poskrobko,
Age-dependent single-species population dynamics with delayed argument, Math. Methods Appl. Sci., 33 (2010), 1122-1135.
|
[9] |
A. L. Dawidowicz, A. Poskrobko and J. L. Zalasiński,
On the age-dependent predator-prey model, Appl. Math., 38 (2011), 453-467.
doi: 10.4064/am38-4-4. |
[10] |
M. Delgado, M. Molina-Becerra and A. Suárez,
Analysis of an age-structured predator-prey model with disease in the prey, Nonlinear Anal. Real World Appl., 7 (2006), 853-871.
doi: 10.1016/j.nonrwa.2005.03.031. |
[11] |
M. Delgado and A. Suárez,
Age-dependent diffusive Lotka-Volterra type system, Math. Comput. Modelling, 45 (2007), 668-680.
doi: 10.1016/j.mcm.2006.07.013. |
[12] |
B. Dubey,
A prey-predator model with a reserved area, Nonlinear Anal. Model. Control, 12 (2007), 479-494.
|
[13] |
M. Farkas,
On the stability of stationary age distributions, Appl. Math. Comput., 131 (2002), 107-123.
doi: 10.1016/S0096-3003(01)00131-X. |
[14] |
U. Foryś,
Multi-dimensional Lotka-Volterra systems for carcinogenesis mutations, Math. Methods Appl. Sci., 32 (2009), 2287-2308.
doi: 10.1002/mma.1137. |
[15] |
M. E. Gurtin and D. S. Levine,
On predator-prey interactions with predation dependent on age of prey, Math. Biosci., 47 (1979), 207-219.
doi: 10.1016/0025-5564(79)90038-5. |
[16] |
J. Li,
Dynamics of age-structured predator-prey population model, J. Math. Anal. Appl., 152 (1990), 399-415.
doi: 10.1016/0022-247X(90)90073-O. |
[17] |
Z. Liu and N. Li,
Stability and bifurcation in a predator-prey model with age structure and delays, J. Nonlinear Sci., 25 (2015), 937-957.
doi: 10.1007/s00332-015-9245-x. |
[18] |
A. G. McKendrick,
Applications of mathematics to medical problems, Proc. Edinburgh Math. Soc., 44 (1925), 98-130.
doi: 10.1017/S0013091500034428. |
[19] |
M. Mohr, M. V. Barbarossa and C. Kuttler,
Predator-prey interactions, age structures and delay equations, Math. Model. Nat. Phenom., 9 (2014), 92-107.
doi: 10.1051/mmnp/20149107. |
[20] |
M. Saleem,
Predator-prey relationships: Indiscriminate predation, J. Math. Biol., 21 (1984), 25-34.
doi: 10.1007/BF00275220. |
[21] |
M. Saleem and A. K. Tripathi,
Asymptotic stability of linear and nonlinear model systems representing age-structured predator-prey interactions, Indian J. Pure Appl. Math., 31 (2000), 1195-1207.
|
[22] |
H. Tang and Z. Liu,
Hopf bifurcation for a predator-prey model with age structure, Appl. Math. Model., 40 (2016), 726-737.
doi: 10.1016/j.apm.2015.09.015. |
[23] |
E. Venturino,
Age-structured predator-prey models, Math. Modelling, 5 (1984), 117-128.
doi: 10.1016/0270-0255(84)90020-4. |
[24] |
V. Volterra,
Variations and fluctuations of the number of individuals in animal species living together, ICES Journal of Marine Science,, 3 (1928), 3-51.
doi: 10.1093/icesjms/3.1.3. |
[25] |
J. von Foerster,
Some Remarks on Changing Populations In: The Kinetics of Cell Proliferation, Grune & Stratton, New York, 1959. |
[26] |
W. X. Xu, T. L. Zhangand and Z. B. Xu,
Existence of positive periodic solutions of a prey-predator system with several delays, Acta Math. Sci. Ser. A Chinese Ed., 28 (2008), 39-45.
|
show all references
References:
[1] |
N. C. Apreutesei,
Necessary optimality conditions for a Lotka-Volterra three species system, Math. Model. Nat. Phenom., 1 (2006), 123-135.
|
[2] |
N. C. Apreutesei,
Necessary optimality conditions for predator-prey system with a hunter population, Opuscula Math., 30 (2010), 389-397.
doi: 10.7494/OpMath.2010.30.4.389. |
[3] |
N. Bairagi and D. Jana,
Age-structured predator-prey model with habitat complexity: Oscillations and control, Dyn. Syst., 27 (2012), 475-499.
doi: 10.1080/14689367.2012.723678. |
[4] |
A. Bielecki,
Une remarque sur la méthode de Banach -Caciopoli -Tikhonov dans la théorie des équations différentielles ordinaires, Bull. Acad. Polon. Sci. Cl. Ⅲ., 4 (1956), 261-264.
|
[5] |
S. Busenberg and M. Iannelli,
Separable models in age-dependent population-dynamics, J. Math. Biol., 22 (1985), 145-173.
doi: 10.1007/BF00275713. |
[6] |
L. M. Cai, X. Z. Li, X. Y. Song and J. Y. Yu, Permanence and stability of an age-structured prey-predator system with delays,
Discrete Dynam. Nat. Soc., 2007 (2007), Art. ID 54861, 15 pp. |
[7] |
J. M. Cushing and M. Saleem,
A predator prey model with age structure, J. Math. Biol., 14 (1982), 231-250.
doi: 10.1007/BF01832847. |
[8] |
A. L. Dawidowicz and A. Poskrobko,
Age-dependent single-species population dynamics with delayed argument, Math. Methods Appl. Sci., 33 (2010), 1122-1135.
|
[9] |
A. L. Dawidowicz, A. Poskrobko and J. L. Zalasiński,
On the age-dependent predator-prey model, Appl. Math., 38 (2011), 453-467.
doi: 10.4064/am38-4-4. |
[10] |
M. Delgado, M. Molina-Becerra and A. Suárez,
Analysis of an age-structured predator-prey model with disease in the prey, Nonlinear Anal. Real World Appl., 7 (2006), 853-871.
doi: 10.1016/j.nonrwa.2005.03.031. |
[11] |
M. Delgado and A. Suárez,
Age-dependent diffusive Lotka-Volterra type system, Math. Comput. Modelling, 45 (2007), 668-680.
doi: 10.1016/j.mcm.2006.07.013. |
[12] |
B. Dubey,
A prey-predator model with a reserved area, Nonlinear Anal. Model. Control, 12 (2007), 479-494.
|
[13] |
M. Farkas,
On the stability of stationary age distributions, Appl. Math. Comput., 131 (2002), 107-123.
doi: 10.1016/S0096-3003(01)00131-X. |
[14] |
U. Foryś,
Multi-dimensional Lotka-Volterra systems for carcinogenesis mutations, Math. Methods Appl. Sci., 32 (2009), 2287-2308.
doi: 10.1002/mma.1137. |
[15] |
M. E. Gurtin and D. S. Levine,
On predator-prey interactions with predation dependent on age of prey, Math. Biosci., 47 (1979), 207-219.
doi: 10.1016/0025-5564(79)90038-5. |
[16] |
J. Li,
Dynamics of age-structured predator-prey population model, J. Math. Anal. Appl., 152 (1990), 399-415.
doi: 10.1016/0022-247X(90)90073-O. |
[17] |
Z. Liu and N. Li,
Stability and bifurcation in a predator-prey model with age structure and delays, J. Nonlinear Sci., 25 (2015), 937-957.
doi: 10.1007/s00332-015-9245-x. |
[18] |
A. G. McKendrick,
Applications of mathematics to medical problems, Proc. Edinburgh Math. Soc., 44 (1925), 98-130.
doi: 10.1017/S0013091500034428. |
[19] |
M. Mohr, M. V. Barbarossa and C. Kuttler,
Predator-prey interactions, age structures and delay equations, Math. Model. Nat. Phenom., 9 (2014), 92-107.
doi: 10.1051/mmnp/20149107. |
[20] |
M. Saleem,
Predator-prey relationships: Indiscriminate predation, J. Math. Biol., 21 (1984), 25-34.
doi: 10.1007/BF00275220. |
[21] |
M. Saleem and A. K. Tripathi,
Asymptotic stability of linear and nonlinear model systems representing age-structured predator-prey interactions, Indian J. Pure Appl. Math., 31 (2000), 1195-1207.
|
[22] |
H. Tang and Z. Liu,
Hopf bifurcation for a predator-prey model with age structure, Appl. Math. Model., 40 (2016), 726-737.
doi: 10.1016/j.apm.2015.09.015. |
[23] |
E. Venturino,
Age-structured predator-prey models, Math. Modelling, 5 (1984), 117-128.
doi: 10.1016/0270-0255(84)90020-4. |
[24] |
V. Volterra,
Variations and fluctuations of the number of individuals in animal species living together, ICES Journal of Marine Science,, 3 (1928), 3-51.
doi: 10.1093/icesjms/3.1.3. |
[25] |
J. von Foerster,
Some Remarks on Changing Populations In: The Kinetics of Cell Proliferation, Grune & Stratton, New York, 1959. |
[26] |
W. X. Xu, T. L. Zhangand and Z. B. Xu,
Existence of positive periodic solutions of a prey-predator system with several delays, Acta Math. Sci. Ser. A Chinese Ed., 28 (2008), 39-45.
|
[1] |
Rui Xu, M.A.J. Chaplain, F.A. Davidson. Periodic solutions of a discrete nonautonomous Lotka-Volterra predator-prey model with time delays. Discrete and Continuous Dynamical Systems - B, 2004, 4 (3) : 823-831. doi: 10.3934/dcdsb.2004.4.823 |
[2] |
Michael Y. Li, Xihui Lin, Hao Wang. Global Hopf branches and multiple limit cycles in a delayed Lotka-Volterra predator-prey model. Discrete and Continuous Dynamical Systems - B, 2014, 19 (3) : 747-760. doi: 10.3934/dcdsb.2014.19.747 |
[3] |
S. Nakaoka, Y. Saito, Y. Takeuchi. Stability, delay, and chaotic behavior in a Lotka-Volterra predator-prey system. Mathematical Biosciences & Engineering, 2006, 3 (1) : 173-187. doi: 10.3934/mbe.2006.3.173 |
[4] |
Xiaoli Liu, Dongmei Xiao. Bifurcations in a discrete time Lotka-Volterra predator-prey system. Discrete and Continuous Dynamical Systems - B, 2006, 6 (3) : 559-572. doi: 10.3934/dcdsb.2006.6.559 |
[5] |
Tongtong Chen, Jixun Chu. Hopf bifurcation for a predator-prey model with age structure and ratio-dependent response function incorporating a prey refuge. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022082 |
[6] |
Li Ma, Shangjiang Guo. Bifurcation and stability of a two-species diffusive Lotka-Volterra model. Communications on Pure and Applied Analysis, 2020, 19 (3) : 1205-1232. doi: 10.3934/cpaa.2020056 |
[7] |
Miljana JovanoviĆ, Marija KrstiĆ. Extinction in stochastic predator-prey population model with Allee effect on prey. Discrete and Continuous Dynamical Systems - B, 2017, 22 (7) : 2651-2667. doi: 10.3934/dcdsb.2017129 |
[8] |
Yuzo Hosono. Traveling waves for the Lotka-Volterra predator-prey system without diffusion of the predator. Discrete and Continuous Dynamical Systems - B, 2015, 20 (1) : 161-171. doi: 10.3934/dcdsb.2015.20.161 |
[9] |
Xiao He, Sining Zheng. Protection zone in a modified Lotka-Volterra model. Discrete and Continuous Dynamical Systems - B, 2015, 20 (7) : 2027-2038. doi: 10.3934/dcdsb.2015.20.2027 |
[10] |
Hanwu Liu, Lin Wang, Fengqin Zhang, Qiuying Li, Huakun Zhou. Dynamics of a predator-prey model with state-dependent carrying capacity. Discrete and Continuous Dynamical Systems - B, 2019, 24 (9) : 4739-4753. doi: 10.3934/dcdsb.2019028 |
[11] |
P. Auger, N. H. Du, N. T. Hieu. Evolution of Lotka-Volterra predator-prey systems under telegraph noise. Mathematical Biosciences & Engineering, 2009, 6 (4) : 683-700. doi: 10.3934/mbe.2009.6.683 |
[12] |
Minzhen Xu, Shangjiang Guo. Dynamics of a delayed Lotka-Volterra model with two predators competing for one prey. Discrete and Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021287 |
[13] |
Shanjing Ren. Global stability in a tuberculosis model of imperfect treatment with age-dependent latency and relapse. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1337-1360. doi: 10.3934/mbe.2017069 |
[14] |
Sílvia Cuadrado. Stability of equilibria of a predator-prey model of phenotype evolution. Mathematical Biosciences & Engineering, 2009, 6 (4) : 701-718. doi: 10.3934/mbe.2009.6.701 |
[15] |
Yinshu Wu, Wenzhang Huang. Global stability of the predator-prey model with a sigmoid functional response. Discrete and Continuous Dynamical Systems - B, 2020, 25 (3) : 1159-1167. doi: 10.3934/dcdsb.2019214 |
[16] |
Youssef Amal, Martin Campos Pinto. Global solutions for an age-dependent model of nucleation, growth and ageing with hysteresis. Discrete and Continuous Dynamical Systems - B, 2010, 13 (3) : 517-535. doi: 10.3934/dcdsb.2010.13.517 |
[17] |
Ovide Arino, Manuel Delgado, Mónica Molina-Becerra. Asymptotic behavior of disease-free equilibriums of an age-structured predator-prey model with disease in the prey. Discrete and Continuous Dynamical Systems - B, 2004, 4 (3) : 501-515. doi: 10.3934/dcdsb.2004.4.501 |
[18] |
Lin Niu, Yi Wang, Xizhuang Xie. Carrying simplex in the Lotka-Volterra competition model with seasonal succession with applications. Discrete and Continuous Dynamical Systems - B, 2021, 26 (4) : 2161-2172. doi: 10.3934/dcdsb.2021014 |
[19] |
Yueding Yuan, Yang Wang, Xingfu Zou. Spatial dynamics of a Lotka-Volterra model with a shifting habitat. Discrete and Continuous Dynamical Systems - B, 2019, 24 (10) : 5633-5671. doi: 10.3934/dcdsb.2019076 |
[20] |
Yukio Kan-On. Global bifurcation structure of stationary solutions for a Lotka-Volterra competition model. Discrete and Continuous Dynamical Systems, 2002, 8 (1) : 147-162. doi: 10.3934/dcds.2002.8.147 |
2021 Impact Factor: 1.169
Tools
Metrics
Other articles
by authors
[Back to Top]