In this paper we study a distributed control problem for a phase-field system of conserved type with a possibly singular potential. We mainly handle two cases: the case of a viscous Cahn-Hilliard type dynamics for the phase variable in case of a logarithmic-type potential with bounded domain and the case of a standard Cahn-Hilliard equation in case of a regular potential with unbounded domain, like the classical double-well potential, for example. Necessary first order conditions of optimality are derived under natural assumptions on the data.
Citation: |
V. Barbu,
Nonlinear Semigroups and Differential Equations in Banach Spaces, Noordhoff, Leyden, 1976.
![]() ![]() |
|
V. Barbu
, M. L. Bernardi
, P. Colli
and G. Gilardi
, Optimal control problems of phase relaxation models, J. Optim. Theory Appl., 109 (2001)
, 557-585.
doi: 10.1023/A:1017563604922.![]() ![]() ![]() |
|
J. L. Boldrini
, B. M. C. Caretta
and E. Fernández-Cara
, Some optimal control problems for a two-phase field model of solidification, Rev. Mat. Complut., 23 (2010)
, 49-75.
doi: 10.1007/s13163-009-0012-0.![]() ![]() ![]() |
|
H. Brezis,
Opérateurs Maximaux Monotones et Semi-groupes de Contractions Dans Les Espaces de Hilbert, North-Holland Math. Stud., 5 North-Holland, Amsterdam, 1973.
![]() ![]() |
|
D. Brochet
, D. Hilhorst
and A. Novick-Cohen
, Maximal attractor and inertial sets for a conserved phase field model, Adv. Differential Equations, 1 (1996)
, 547-578.
![]() ![]() |
|
M. Brokate and J. Sprekels,
Hysteresis and Phase Transitions, Springer, New York, 1996.
![]() ![]() |
|
G. Caginalp
, The dynamics of a conserved phase field system: Stefan-like, Hele-Shaw, and Cahn-Hilliard models as asymptotic limits, IMA J. Appl. Math., 44 (1990)
, 77-94.
doi: 10.1093/imamat/44.1.77.![]() ![]() ![]() |
|
J. W. Cahn
and J. E. Hilliard
, Free energy of a nonuniform system Ⅰ. Interfacial free energy, J. Chem. Phys., 2 (1958)
, 258-267.
doi: 10.1002/9781118788295.ch4.![]() ![]() |
|
C. Cavaterra
, M. Grasselli
and H. Wu
, Non-isothermal viscous Cahn-Hilliard equation with inertial term and dynamic boundary conditions, Comm. Pure Appl. Anal., 13 (2014)
, 1855-1890.
doi: 10.3934/cpaa.2014.13.1855.![]() ![]() ![]() |
|
P. Colli
, M. H. Farshbaf-Shaker
, G. Gilardi
and J. Sprekels
, Optimal boundary control of a viscous Cahn-Hilliard system with dynamic boundary condition and double obstacle potentials, SIAM J. Control Optim., 53 (2015)
, 2696-2721.
doi: 10.1137/140984749.![]() ![]() ![]() |
|
P. Colli
, G. Gilardi
, P. Laurençot
and A. Novick-Cohen
, Uniqueness and long-time behaviour for the conserved phase-field system with memory, Discrete Contin. Dynam. Systems, 5 (1999)
, 375-390.
doi: 10.3934/dcds.1999.5.375.![]() ![]() ![]() |
|
P. Colli
, G. Gilardi
and G. Marinoschi
, A boundary control problem for a possibly singular phase field system with dynamic boundary conditions, J. Math. Anal. Appl., 434 (2016)
, 432-463.
doi: 10.1016/j.jmaa.2015.09.011.![]() ![]() ![]() |
|
P. Colli
, G. Gilardi
, G. Marinoschi
and E. Rocca
, Optimal control for a phase field system with a possibly singular potential, Math. Control Relat. Fields, 6 (2016)
, 95-112.
doi: 10.3934/mcrf.2016.6.95.![]() ![]() ![]() |
|
P. Colli, G. Gilardi, G. Marinoschi and E. Rocca, Distributed optimal control problems for phase field systems with singular potential, An. Ȿtiinţ. Univ. "Ovidius" Constanţa Ser. Mat., to appear (2017).
![]() |
|
P. Colli
, G. Gilardi
and J. Sprekels
, On the Cahn-Hilliard equation with dynamic boundary conditions and a dominating boundary potential, J. Math. Anal. Appl., 419 (2014)
, 972-994.
doi: 10.1016/j.jmaa.2014.05.008.![]() ![]() ![]() |
|
P. Colli
, G. Gilardi
and J. Sprekels
, A boundary control problem for the pure Cahn-Hilliard equation with dynamic boundary conditions, Adv. Nonlinear Anal., 4 (2015)
, 311-325.
doi: 10.1515/anona-2015-0035.![]() ![]() ![]() |
|
P. Colli
, G. Gilardi
and J. Sprekels
, A boundary control problem for the viscous Cahn-Hilliard equation with dynamic boundary conditions, Appl. Math. Optim., 73 (2016)
, 195-225.
doi: 10.1007/s00245-015-9299-z.![]() ![]() ![]() |
|
P. Colli
, G. Gilardi
, P. Podio-Guidugli
and J. Sprekels
, Distributed optimal control of a nonstandard system of phase field equations, Contin. Mech. Thermodyn., 24 (2012)
, 437-459.
doi: 10.1007/s00161-011-0215-8.![]() ![]() ![]() |
|
P. Colli
, G. Gilardi
and J. Sprekels
, Analysis and optimal boundary control of a nonstandard system of phase field equations, Milan J. Math., 80 (2012)
, 119-149.
doi: 10.1007/s00032-012-0181-z.![]() ![]() ![]() |
|
P. Colli
, G. Marinoschi
and E. Rocca
, Sharp interface control in a Penrose-Fife model, ESAIM Control Optim. Calc. Var., 22 (2016)
, 473-499.
doi: 10.1051/cocv/2015014.![]() ![]() ![]() |
|
G. Gilardi
, On a conserved phase field model with irregular potentials and dynamic boundary conditions, Rend. Cl. Sci. Mat. Nat., 141 (2007)
, 129-161.
![]() ![]() |
|
K.-H. Hoffmann
and L. S. Jiang
, Optimal control of a phase field model for solidification, Numer. Funct. Anal. Optim., 13 (1992)
, 11-27.
doi: 10.1080/01630569208816458.![]() ![]() ![]() |
|
K.-H. Hoffmann
, N. Kenmochi
, M. Kubo
and N. Yamazaki
, Optimal control problems for models of phase-field type with hysteresis of play operator, Adv. Math. Sci. Appl., 17 (2007)
, 305-336.
![]() ![]() |
|
N. Kenmochi
and M. Niezgódka
, Nonlinear system for non-isothermal diffusive phase separation, J. Math. Anal. Appl., 188 (1994)
, 651-679.
doi: 10.1006/jmaa.1994.1451.![]() ![]() ![]() |
|
O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and quasilinear equations of parabolic type, Trans. Amer. Math. Soc., 23, Amer. Math. Soc., Providence, RI, 1968.
![]() ![]() |
|
C. Lefter
and J. Sprekels
, Optimal boundary control of a phase field system modeling nonisothermal phase transitions, Adv. Math. Sci. Appl., 17 (2007)
, 181-194.
![]() ![]() |
|
J. -L. Lions, Quelques méthodes de résolution des problémes aux limites non linéaires, Dunod; Gauthier-Villars, Paris, 1969.
![]() ![]() |
|
A. Miranville
, On the conserved phase-field model, J. Math. Anal. Appl., 400 (2013)
, 143-152.
doi: 10.1016/j.jmaa.2012.11.038.![]() ![]() ![]() |
|
A. Miranville
and S. Zelik
, Robust exponential attractors for Cahn-Hilliard type equations with singular potentials, Math. Methods Appl. Sci., 27 (2004)
, 545-582.
doi: 10.1002/mma.464.![]() ![]() ![]() |
|
K. Shirakawa
and N. Yamazaki
, Optimal control problems of phase field system with total variation functional as the interfacial energy, Adv. Differential Equations, 18 (2013)
, 309-350.
![]() ![]() |
|
J. Simon
, Compact sets in the space $L^p(0,T; B)$, Ann. Mat. Pura Appl., 146 (1987)
, 65-96.
![]() ![]() |
|
J. Sprekels
and S. Zheng
, Optimal control problems for a thermodynamically consistent model of phase-field type for phase transitions, Adv. Math. Sci. Appl., 1 (1992)
, 113-125.
![]() ![]() |