Advanced Search
Article Contents
Article Contents

Global well-posedness of unsteady motion of viscous incompressible capillary liquid bounded by a free surface

Partially supported by JSPS Grant-in-aid for Scientific Research (A) 17H0109 and Top Global University Project. Adjunct faculty member in the Department of Mechanical Engineering and Materials Science, University of Pittsburgh

Abstract Full Text(HTML) Related Papers Cited by
  • In this paper, we prove the global well-posedness of free boundary problems of the Navier-Stokes equations in a bounded domain with surface tension. The velocity field is obtained in the $L_p$ in time $L_q$ in space maximal regularity class, ($2 < p < ∞$, $N < q < ∞$, and $2/p + N/q < 1$), under the assumption that the initial domain is close to a ball and initial data are sufficiently small. The essential point of our approach is to drive the exponential decay theorem in the $L_p$-$L_q$ framework for the linearized equations with the help of maximal $L_p$-$L_q$ regularity theory for the Stokes equations with free boundary conditions and spectral analysis of the Stokes operator and the Laplace-Beltrami operator.

    Mathematics Subject Classification: Primary: 35R35; Secondary: 35Q30, 76D05, 76D03.


    \begin{equation} \\ \end{equation}
  • 加载中
  •   H. Abels , The initial-value problem for the Navier-Stokes equations with a free surface in $L_q$ Sobolev spaces, Adv. Differential Equations, 10 (2005) , 45-64. 
      G. Allain , Small-time existence for the Navier-Stokes equations with a free surface, Appl. Math. Optim., 16 (1987) , 37-50.  doi: 10.1007/BF01442184.
      J. T. Beale , The initial value problem for the Navier-Stokes equations with a free boundary, Comm. Pure Appl. Math., 34 (1981) , 359-392.  doi: 10.1002/cpa.3160340305.
      J. T. Beale , Large time regularity of viscous surface waves, Arch. Rat. Mech. Anal., 84 (1984) , 307-352. 
      J. T. Beale  and  T. Nishida , Large time behavior of viscous surface waves, Lecture Notes in Numer. Appl. Anal., 8 (1985) , 1-14. 
      Y. Hataya  and  S. Kawashima , Decaying solution of the Navier-Stokes flow of infinite volume without surface tension, Nonlinear Anal., 71 (2009) , 2535-2539.  doi: 10.1016/j.na.2009.05.061.
      Y. Hataya , A remark on Beal-Nishida's paper, Bull. Inst. Math. Acad. Sin. (N.S.), 6 (2011) , 293-303. 
      M. Köhne , J. Prüss  and  M. Wilke , Qualitative Behavior of solutions for the two-phase Navier-Stokes equations with surface tension, Math. Ann., 356 (2013) , 737-792.  doi: 10.1007/s00208-012-0860-7.
      I. Sh. Mogilevskiǐ and V. A. Solonnikov, On the solvability of a free boundary problem for the Navier-Stokes equations in the Hölder spaces of functions, Nonlinear Analysis. A Tribute in Honour of Giovanni Prodi, Quaderni, Pisa, (1991), 257–272.
      P. B. Mucha  and  W. Zajączkowski , On local existence of solutions of the free boundary problem for an incompressible viscous self-gravitating fluid motion, Applicationes Mathematicae, 27 (2000) , 319-333. 
      U. Neri, Singular Integrals, Lecutre Notes in Mathematics 200, Springer, New York, 1971.
      T. Nishida , Equations of fluid dynamics -free surface problems, Comm. Pure Appl. Math., 39 (1986) , 221-238.  doi: 10.1002/cpa.3160390712.
      M. Padula  and  V. A. Solonnikov , On the local solvability of free boundary problem for the Navier-Stokes equations, J. Math. Sci., 170 (2010) , 522-553.  doi: 10.1007/s10958-010-0099-3.
      J. Prüss  and  G. Simonett , On the two-phase Navier-Stokes equations with surface tension, Interfaces and Free Boundaries, 12 (2010) , 311-345. 
      J. Prüess  and  G. Simonett , Analytic solutions for the two-phase Navier-Stokes equations with surface tension and gravity, Progress in Nonlinear Differential Equations and Their Applications, 80 (2011) , 507-540. 
      J. Prüess and G. Simonett, Moving Interfaces and Quasilinear Parabolic Evolution Equations, Birkhauser Monographs in Mathematics, 2016.
      H. Saito  and  Y. Shibata , On decay properties of solutions to the Stokes equations with surface tension and gravity in the half space, J. Math. Soc. Japan, 68 (2016) , 1559-1614.  doi: 10.2969/jmsj/06841559.
      H. Saito and Y. Shibata, On the global wellposedness of free boundary problem for the Navier Stokes systems with surface tension, Preprint.
      B. Schweizer , Free boundary fluid systems in a semigroup approach and oscillatory behavior, SIAM J. Math. Anal., 28 (1997) , 1135-1157.  doi: 10.1137/S0036141096299892.
      Y. Shibata , On some free boundary problem of the Navier-Stokes equations in the maximal $L_p$ -$L_q$ regularity class, J. Differential Equations, 258 (2015) , 4127-4155.  doi: 10.1016/j.jde.2015.01.028.
      Y. Shibata, On the $\mathcal{R}$-bounded solution operators in the study of free boundary problem for the Navier-Stokes equations, in Mathematical Fluid Dynaics, Present and Future, Tokyo, Japna, November 2014 (eds. Y. Shibata and Y. Suzuki), Springer Proceedings in Mathematics & Staistics, 183 (2016), 203–285.
      Y. Shibata , Local well-posedness of free surface problems for the Navier-Stokes equations in a general domain, Discrete and Continuous Dynamical Systems, Series S, 9 (2016) , 315-342. 
      Y. Shibata  and  S. Shimizu , On a free boundary problem for the Navier-Stokes equations, Differential Integral Equations, 20 (2007) , 241-276. 
      V. A. Solonnikov, Unsteady motion of a finite mass of fluid, bounded by a free surface, Zap. Nauchn. Sem. (LOMI), 152 (1986), 137–157 (in Russian); English transl. : J. Soviet Math., 40 (1988), 672–686.
      V. A. Solonnikov, On the transient motion of an isolated volume of viscous incompressible fluid, Izv. Akad. Nauk SSSR Ser. Mat., 51 (1987), 1065–1087 (in Russian); English transl. : Math. USSR Izv. , 31 (1988), 381–405.
      V. A. Solonnikov, Solvability of the problem of evolution of a viscous incompressible fluid bounded by a free surface on a finite time interval, Algebra i Analiz, 3 (1991), 222–257 (in Russian); English transl. : St. Petersburg Math. J. , 3 (1992), 189–220.
      V. A. Solonnikov, Lectures on evolution free boundary problems: Classical solutions, L. Ambrosio et al. : Lecture Note in Mathematics (eds. P. Colli and J. F. Rodrigues), SpringerVerlag, Berlin, Heidelberg, 1812 (2003), 123–175.
      D. Sylvester , Large time existence of small viscous surface waves without surface tension, Commun. Partial Differential Equations, 15 (1990) , 823-903.  doi: 10.1080/03605309908820709.
      N. Tanaka , Global existence of two phase non-homogeneous viscous incompressible weak fluid flow, Commun. Partial Differential Equations, 18 (1993) , 41-81.  doi: 10.1080/03605309308820921.
      A. Tani , Small-time existence for the three-dimensional incompressible Navier-Stokes equations with a free surface, Arch. Rat. Mech. Anal., 133 (1996) , 299-331.  doi: 10.1007/BF00375146.
      A. Tani  and  N. Tanaka , Large time existence of surface waves in incompressible viscous fluids with or without surface tension, Arch. Rat. Mech. Anal., 130 (1995) , 303-314.  doi: 10.1007/BF00375142.
  • 加载中

Article Metrics

HTML views(598) PDF downloads(273) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint