In this paper, we prove the global well-posedness of free boundary problems of the Navier-Stokes equations in a bounded domain with surface tension. The velocity field is obtained in the $L_p$ in time $L_q$ in space maximal regularity class, ($2 < p < ∞$, $N < q < ∞$, and $2/p + N/q < 1$), under the assumption that the initial domain is close to a ball and initial data are sufficiently small. The essential point of our approach is to drive the exponential decay theorem in the $L_p$-$L_q$ framework for the linearized equations with the help of maximal $L_p$-$L_q$ regularity theory for the Stokes equations with free boundary conditions and spectral analysis of the Stokes operator and the Laplace-Beltrami operator.
Citation: |
H. Abels
, The initial-value problem for the Navier-Stokes equations with a free surface in $L_q$ Sobolev spaces, Adv. Differential Equations, 10 (2005)
, 45-64.
![]() ![]() |
|
G. Allain
, Small-time existence for the Navier-Stokes equations with a free surface, Appl. Math. Optim., 16 (1987)
, 37-50.
doi: 10.1007/BF01442184.![]() ![]() ![]() |
|
J. T. Beale
, The initial value problem for the Navier-Stokes equations with a free boundary, Comm. Pure Appl. Math., 34 (1981)
, 359-392.
doi: 10.1002/cpa.3160340305.![]() ![]() ![]() |
|
J. T. Beale
, Large time regularity of viscous surface waves, Arch. Rat. Mech. Anal., 84 (1984)
, 307-352.
![]() ![]() |
|
J. T. Beale
and T. Nishida
, Large time behavior of viscous surface waves, Lecture Notes in Numer. Appl. Anal., 8 (1985)
, 1-14.
![]() ![]() |
|
Y. Hataya
and S. Kawashima
, Decaying solution of the Navier-Stokes flow of infinite volume without surface tension, Nonlinear Anal., 71 (2009)
, 2535-2539.
doi: 10.1016/j.na.2009.05.061.![]() ![]() ![]() |
|
Y. Hataya
, A remark on Beal-Nishida's paper, Bull. Inst. Math. Acad. Sin. (N.S.), 6 (2011)
, 293-303.
![]() ![]() |
|
M. Köhne
, J. Prüss
and M. Wilke
, Qualitative Behavior of solutions for the two-phase Navier-Stokes equations with surface tension, Math. Ann., 356 (2013)
, 737-792.
doi: 10.1007/s00208-012-0860-7.![]() ![]() ![]() |
|
I. Sh. Mogilevskiǐ and V. A. Solonnikov, On the solvability of a free boundary problem for
the Navier-Stokes equations in the Hölder spaces of functions, Nonlinear Analysis. A Tribute
in Honour of Giovanni Prodi, Quaderni, Pisa, (1991), 257–272.
![]() ![]() |
|
P. B. Mucha
and W. Zajączkowski
, On local existence of solutions of the free boundary problem for an incompressible viscous self-gravitating fluid motion, Applicationes Mathematicae, 27 (2000)
, 319-333.
![]() ![]() |
|
U. Neri,
Singular Integrals, Lecutre Notes in Mathematics 200, Springer, New York, 1971.
![]() ![]() |
|
T. Nishida
, Equations of fluid dynamics -free surface problems, Comm. Pure Appl. Math., 39 (1986)
, 221-238.
doi: 10.1002/cpa.3160390712.![]() ![]() ![]() |
|
M. Padula
and V. A. Solonnikov
, On the local solvability of free boundary problem for the Navier-Stokes equations, J. Math. Sci., 170 (2010)
, 522-553.
doi: 10.1007/s10958-010-0099-3.![]() ![]() ![]() |
|
J. Prüss
and G. Simonett
, On the two-phase Navier-Stokes equations with surface tension, Interfaces and Free Boundaries, 12 (2010)
, 311-345.
![]() ![]() |
|
J. Prüess
and G. Simonett
, Analytic solutions for the two-phase Navier-Stokes equations with surface tension and gravity, Progress in Nonlinear Differential Equations and Their Applications, 80 (2011)
, 507-540.
![]() ![]() |
|
J. Prüess and G. Simonett,
Moving Interfaces and Quasilinear Parabolic Evolution Equations, Birkhauser Monographs in Mathematics, 2016.
![]() ![]() |
|
H. Saito
and Y. Shibata
, On decay properties of solutions to the Stokes equations with surface tension and gravity in the half space, J. Math. Soc. Japan, 68 (2016)
, 1559-1614.
doi: 10.2969/jmsj/06841559.![]() ![]() ![]() |
|
H. Saito and Y. Shibata, On the global wellposedness of free boundary problem for the Navier Stokes systems with surface tension, Preprint.
![]() |
|
B. Schweizer
, Free boundary fluid systems in a semigroup approach and oscillatory behavior, SIAM J. Math. Anal., 28 (1997)
, 1135-1157.
doi: 10.1137/S0036141096299892.![]() ![]() ![]() |
|
Y. Shibata
, On some free boundary problem of the Navier-Stokes equations in the maximal $L_p$
-$L_q$ regularity class, J. Differential Equations, 258 (2015)
, 4127-4155.
doi: 10.1016/j.jde.2015.01.028.![]() ![]() ![]() |
|
Y. Shibata, On the $\mathcal{R}$-bounded solution operators in the study of free boundary problem
for the Navier-Stokes equations, in Mathematical Fluid Dynaics, Present and Future, Tokyo,
Japna, November 2014 (eds. Y. Shibata and Y. Suzuki), Springer Proceedings in Mathematics & Staistics, 183 (2016), 203–285.
![]() ![]() |
|
Y. Shibata
, Local well-posedness of free surface problems for the Navier-Stokes equations in a general domain, Discrete and Continuous Dynamical Systems, Series S, 9 (2016)
, 315-342.
![]() ![]() |
|
Y. Shibata
and S. Shimizu
, On a free boundary problem for the Navier-Stokes equations, Differential Integral Equations, 20 (2007)
, 241-276.
![]() ![]() |
|
V. A. Solonnikov, Unsteady motion of a finite mass of fluid, bounded by a free surface, Zap.
Nauchn. Sem. (LOMI), 152 (1986), 137–157 (in Russian); English transl. : J. Soviet Math.,
40 (1988), 672–686.
![]() ![]() |
|
V. A. Solonnikov, On the transient motion of an isolated volume of viscous incompressible
fluid, Izv. Akad. Nauk SSSR Ser. Mat., 51 (1987), 1065–1087 (in Russian); English transl. :
Math. USSR Izv. , 31 (1988), 381–405.
![]() ![]() |
|
V. A. Solonnikov, Solvability of the problem of evolution of a viscous incompressible fluid
bounded by a free surface on a finite time interval, Algebra i Analiz, 3 (1991), 222–257 (in
Russian); English transl. : St. Petersburg Math. J. , 3 (1992), 189–220.
![]() ![]() |
|
V. A. Solonnikov, Lectures on evolution free boundary problems: Classical solutions, L.
Ambrosio et al. : Lecture Note in Mathematics (eds. P. Colli and J. F. Rodrigues), SpringerVerlag, Berlin, Heidelberg, 1812 (2003), 123–175.
![]() ![]() |
|
D. Sylvester
, Large time existence of small viscous surface waves without surface tension, Commun. Partial Differential Equations, 15 (1990)
, 823-903.
doi: 10.1080/03605309908820709.![]() ![]() ![]() |
|
N. Tanaka
, Global existence of two phase non-homogeneous viscous incompressible weak fluid flow, Commun. Partial Differential Equations, 18 (1993)
, 41-81.
doi: 10.1080/03605309308820921.![]() ![]() ![]() |
|
A. Tani
, Small-time existence for the three-dimensional incompressible Navier-Stokes equations with a free surface, Arch. Rat. Mech. Anal., 133 (1996)
, 299-331.
doi: 10.1007/BF00375146.![]() ![]() ![]() |
|
A. Tani
and N. Tanaka
, Large time existence of surface waves in incompressible viscous fluids with or without surface tension, Arch. Rat. Mech. Anal., 130 (1995)
, 303-314.
doi: 10.1007/BF00375142.![]() ![]() ![]() |