\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Robust Stackelberg controllability for linear and semilinear heat equations

Abstract / Introduction Full Text(HTML) Related Papers Cited by
  • In this paper, we present a Stackelberg strategy to control a semilinear parabolic equation. We use the concept of hierarchic control to combine the concepts of controllability with robustness. We have a control named the leader which is responsible for a controllability to trajectories objective. Additionally, we have a control named the follower, that solves a robust control problem. That means we solve for the optimal control in the presence of the worst disturbance case. In this way, the follower control is insensitive to a broad class of external disturbances.

    Mathematics Subject Classification: Primary: 49J20, 93B05; Secondary: 49K35.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] F. D. ArarunaE. Fernández-Cara and M. C. Santos, Stackelberg-Nash exact controllability for linear and semilinear parabolic equations, ESAIM: Control Optim. Calc. Var., 21 (2015), 835-856.  doi: 10.1051/cocv/2014052.
    [2] F. D. ArarunaS. D. B. de Menezes and M. A. Rojas-Medar, On the approximate controllability of Stackelberg-Nash strategies for linearized microplar fluids, Appl. Math. Optim., 70 (2014), 373-393.  doi: 10.1007/s00245-014-9240-x.
    [3] A. Belmiloudi, On some robust control problems for nonlinear parabolic equations, Int. J. Pure Appl. Math., 11 (2004), 119-151. 
    [4] T. R. BewleyR. Temam and M. Ziane, A generalized framework for robust control in fluid mechanics, Center for Turbulence Research Annual Briefs, (1997), 299-316. 
    [5] T. R. BewleyR. Temam and M. Ziane, A general framework for robust control in fluid mechanics, Phys. D, 138 (2000), 360-392.  doi: 10.1016/S0167-2789(99)00206-7.
    [6] O. BodartM. González-Burgos and R. Pérez-García, Insensitizing controls for a heat equation with a nonlinear term involving the state and the gradient, Nonlinear Anal., 57 (2004), 687-711.  doi: 10.1016/j.na.2004.03.012.
    [7] J. I. Díaz, On the Von Neumann problem and the approximate controllability of Stackelberg-Nash strategies for some environmental problems, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM, 96 (2002), 343-356. 
    [8] I. Ekeland and R. Temam, Convex Analysis and Variational Problems, North-Holland, 1976.
    [9] L. C. Evans, Partial Differential Equations, Graduate Studies in Mathematics, 19. American Mathematical Society, Providence, RI, 1998.
    [10] C. FabreJ. P. Puel and E. Zuazua, Approximate controllability of the semilinear heat equation, Proc. Roy. Soc. Edinburgh Sect. A, 125 (1995), 31-61.  doi: 10.1017/S0308210500030742.
    [11] L. A. Fernández and E. Zuazua, Approximate controllability for the semilinear heat equation involving gradient terms, J. Optim. Theor. Appl., 101 (1999), 307-328.  doi: 10.1023/A:1021737526541.
    [12] E. Fernández-Cara and S. Guerrero, Global Carleman inequalities for parabolic systems and applications to controllability, SIAM J. Control Optim., 45 (2006), 1395-1446.  doi: 10.1137/S0363012904439696.
    [13] E. Fernández-CaraS. GuerreroO. Yu. Imanuvilov and J. P. Puel, Local exact controllability of the Navier-Stokes system, J. Math. Pures Appl., 83 (2004), 1501-1542.  doi: 10.1016/j.matpur.2004.02.010.
    [14] E. Fernández-Cara and E. Zuazua, Null and approximate controllability for weakly blowing up semilinear heat equations, Ann. I. H. Poincaré-AN, 17 (2000), 583-616.  doi: 10.1016/S0294-1449(00)00117-7.
    [15] A. Fursikov and O. Yu. Imanuvilov, Controllability of Evolution Equations, Lecture Notes, Research Institute of Mathematics, Seoul National University, Korea, 1996.
    [16] R. GlowinskiA. Ramos and J. Periaux, Nash equilibria for the multiobjective control of linear partial differential equations, J. Optim. Theory Appl., 112 (2002), 457-498.  doi: 10.1023/A:1017981514093.
    [17] M. González-Burgos and L. de Teresa, Controllability results for cascade systems of $m$ coupled parabolic PDEs by one control force, Port. Math., 67 (2010), 91-113.  doi: 10.4171/PM/1859.
    [18] F. Guillén-GonzálezF. Marques-Lopes and M. Rojas-Medar, On the approximate controllability of Stackelberg-Nash strategies for Stokes equations, Proc. Amer. Math. Soc., 141 (2013), 1759-1773.  doi: 10.1090/S0002-9939-2012-11459-5.
    [19] O. Yu. Imanuvilov and M. Yamamoto, Carleman inequalities for parabolic equations in Sobolev spaces of negative order and exact controllability for semilinear parabolic equations, Publ. Res. Inst. Math. Sci., 39 (2003), 227-274.  doi: 10.2977/prims/1145476103.
    [20] O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasi-Linear Equations of Parabolic Type, Translated from the Russian by S. Smith. Translations of Mathematical Monographs, Vol. 23 American Mathematical Society, Providence, R. I., 1968.
    [21] J. LimacoH. Clark and L. Medeiros, Remarks on hierarchic control, J. Math. Anal. Appl., 359 (2009), 368-383.  doi: 10.1016/j.jmaa.2009.05.040.
    [22] J. -L Lions, Optimal Control of Systems Governed by Partial Differential Equations, Springer-Verlag, 1971.
    [23] J.-L. Lions, Hierarchic control, Proc. Indian Acad. Sci. Math. Sci., 104 (1994), 295-304.  doi: 10.1007/BF02830893.
    [24] J.-L. Lions, Some remarks on Stackelberg's optimization, Math. Models Methods Appl. Sci., 4 (1994), 477-487.  doi: 10.1142/S0218202594000273.
    [25] C. McMillan and R. Triggiani, Min-max game theory and algebraic Riccati equations for boundary control problems with continuous input-solution map. II. The general case, Appl. Math. Optim., 29 (1994), 1-65.  doi: 10.1007/BF01191106.
    [26] J. F. Nash, Non-cooperative games, Ann. of Math., 54 (1951), 286-295.  doi: 10.2307/1969529.
    [27] V. Pareto, Cours d'économie politique, Travaux de Sciences Sociales, (1964), p424.  doi: 10.3917/droz.paret.1964.01.
    [28] T. Seidman and H. Z. Zhou, Existence and uniqueness of optimal controls for a quasilinear parabolic equation, SIAM J. Control Optim., 20 (1982), 747-762.  doi: 10.1137/0320054.
    [29] H. von Stackelberg, Marktform und Gleichgewicht, Springer, 1934.
    [30] L. de Teresa, Insensitizing controls for a semilinear heat equation, Comm. Partial Differential Equations, 25 (2000), 39-72.  doi: 10.1080/03605300008821507.
    [31] F. Tröltzsch, Optimal Control of Partial Differential Equations: Theory, Methods and Applications, American Mathematical Society, 2010. doi: 10.1090/gsm/112.
    [32] E. Zuazua, Exact boundary controllability for the semilinear wave equation, Nonlinear Partial Differential Equations and Their Applications, Vol. X (Paris 1987–1988), 357–391, Pitman Res. Notes Math. Ser., 220, Longman Sci. Tech., Harlow, 1991.
  • 加载中
SHARE

Article Metrics

HTML views(1836) PDF downloads(245) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return