In this paper, we present a Stackelberg strategy to control a semilinear parabolic equation. We use the concept of hierarchic control to combine the concepts of controllability with robustness. We have a control named the leader which is responsible for a controllability to trajectories objective. Additionally, we have a control named the follower, that solves a robust control problem. That means we solve for the optimal control in the presence of the worst disturbance case. In this way, the follower control is insensitive to a broad class of external disturbances.
Citation: |
[1] | F. D. Araruna, E. Fernández-Cara and M. C. Santos, Stackelberg-Nash exact controllability for linear and semilinear parabolic equations, ESAIM: Control Optim. Calc. Var., 21 (2015), 835-856. doi: 10.1051/cocv/2014052. |
[2] | F. D. Araruna, S. D. B. de Menezes and M. A. Rojas-Medar, On the approximate controllability of Stackelberg-Nash strategies for linearized microplar fluids, Appl. Math. Optim., 70 (2014), 373-393. doi: 10.1007/s00245-014-9240-x. |
[3] | A. Belmiloudi, On some robust control problems for nonlinear parabolic equations, Int. J. Pure Appl. Math., 11 (2004), 119-151. |
[4] | T. R. Bewley, R. Temam and M. Ziane, A generalized framework for robust control in fluid mechanics, Center for Turbulence Research Annual Briefs, (1997), 299-316. |
[5] | T. R. Bewley, R. Temam and M. Ziane, A general framework for robust control in fluid mechanics, Phys. D, 138 (2000), 360-392. doi: 10.1016/S0167-2789(99)00206-7. |
[6] | O. Bodart, M. González-Burgos and R. Pérez-García, Insensitizing controls for a heat equation with a nonlinear term involving the state and the gradient, Nonlinear Anal., 57 (2004), 687-711. doi: 10.1016/j.na.2004.03.012. |
[7] | J. I. Díaz, On the Von Neumann problem and the approximate controllability of Stackelberg-Nash strategies for some environmental problems, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM, 96 (2002), 343-356. |
[8] | I. Ekeland and R. Temam, Convex Analysis and Variational Problems, North-Holland, 1976. |
[9] | L. C. Evans, Partial Differential Equations, Graduate Studies in Mathematics, 19. American Mathematical Society, Providence, RI, 1998. |
[10] | C. Fabre, J. P. Puel and E. Zuazua, Approximate controllability of the semilinear heat equation, Proc. Roy. Soc. Edinburgh Sect. A, 125 (1995), 31-61. doi: 10.1017/S0308210500030742. |
[11] | L. A. Fernández and E. Zuazua, Approximate controllability for the semilinear heat equation involving gradient terms, J. Optim. Theor. Appl., 101 (1999), 307-328. doi: 10.1023/A:1021737526541. |
[12] | E. Fernández-Cara and S. Guerrero, Global Carleman inequalities for parabolic systems and applications to controllability, SIAM J. Control Optim., 45 (2006), 1395-1446. doi: 10.1137/S0363012904439696. |
[13] | E. Fernández-Cara, S. Guerrero, O. Yu. Imanuvilov and J. P. Puel, Local exact controllability of the Navier-Stokes system, J. Math. Pures Appl., 83 (2004), 1501-1542. doi: 10.1016/j.matpur.2004.02.010. |
[14] | E. Fernández-Cara and E. Zuazua, Null and approximate controllability for weakly blowing up semilinear heat equations, Ann. I. H. Poincaré-AN, 17 (2000), 583-616. doi: 10.1016/S0294-1449(00)00117-7. |
[15] | A. Fursikov and O. Yu. Imanuvilov, Controllability of Evolution Equations, Lecture Notes, Research Institute of Mathematics, Seoul National University, Korea, 1996. |
[16] | R. Glowinski, A. Ramos and J. Periaux, Nash equilibria for the multiobjective control of linear partial differential equations, J. Optim. Theory Appl., 112 (2002), 457-498. doi: 10.1023/A:1017981514093. |
[17] | M. González-Burgos and L. de Teresa, Controllability results for cascade systems of $m$ coupled parabolic PDEs by one control force, Port. Math., 67 (2010), 91-113. doi: 10.4171/PM/1859. |
[18] | F. Guillén-González, F. Marques-Lopes and M. Rojas-Medar, On the approximate controllability of Stackelberg-Nash strategies for Stokes equations, Proc. Amer. Math. Soc., 141 (2013), 1759-1773. doi: 10.1090/S0002-9939-2012-11459-5. |
[19] | O. Yu. Imanuvilov and M. Yamamoto, Carleman inequalities for parabolic equations in Sobolev spaces of negative order and exact controllability for semilinear parabolic equations, Publ. Res. Inst. Math. Sci., 39 (2003), 227-274. doi: 10.2977/prims/1145476103. |
[20] | O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasi-Linear Equations of Parabolic Type, Translated from the Russian by S. Smith. Translations of Mathematical Monographs, Vol. 23 American Mathematical Society, Providence, R. I., 1968. |
[21] | J. Limaco, H. Clark and L. Medeiros, Remarks on hierarchic control, J. Math. Anal. Appl., 359 (2009), 368-383. doi: 10.1016/j.jmaa.2009.05.040. |
[22] | J. -L Lions, Optimal Control of Systems Governed by Partial Differential Equations, Springer-Verlag, 1971. |
[23] | J.-L. Lions, Hierarchic control, Proc. Indian Acad. Sci. Math. Sci., 104 (1994), 295-304. doi: 10.1007/BF02830893. |
[24] | J.-L. Lions, Some remarks on Stackelberg's optimization, Math. Models Methods Appl. Sci., 4 (1994), 477-487. doi: 10.1142/S0218202594000273. |
[25] | C. McMillan and R. Triggiani, Min-max game theory and algebraic Riccati equations for boundary control problems with continuous input-solution map. II. The general case, Appl. Math. Optim., 29 (1994), 1-65. doi: 10.1007/BF01191106. |
[26] | J. F. Nash, Non-cooperative games, Ann. of Math., 54 (1951), 286-295. doi: 10.2307/1969529. |
[27] | V. Pareto, Cours d'économie politique, Travaux de Sciences Sociales, (1964), p424. doi: 10.3917/droz.paret.1964.01. |
[28] | T. Seidman and H. Z. Zhou, Existence and uniqueness of optimal controls for a quasilinear parabolic equation, SIAM J. Control Optim., 20 (1982), 747-762. doi: 10.1137/0320054. |
[29] | H. von Stackelberg, Marktform und Gleichgewicht, Springer, 1934. |
[30] | L. de Teresa, Insensitizing controls for a semilinear heat equation, Comm. Partial Differential Equations, 25 (2000), 39-72. doi: 10.1080/03605300008821507. |
[31] | F. Tröltzsch, Optimal Control of Partial Differential Equations: Theory, Methods and Applications, American Mathematical Society, 2010. doi: 10.1090/gsm/112. |
[32] | E. Zuazua, Exact boundary controllability for the semilinear wave equation, Nonlinear Partial Differential Equations and Their Applications, Vol. X (Paris 1987–1988), 357–391, Pitman Res. Notes Math. Ser., 220, Longman Sci. Tech., Harlow, 1991. |