June  2018, 7(2): 281-291. doi: 10.3934/eect.2018014

On the viscoelastic equation with Balakrishnan-Taylor damping and acoustic boundary conditions

Department of Mathematics, and Institute of Pure and Applied Mathematics, Chonbuk National University, Jeonju 54896, Republic of Korea

Received  October 2017 Revised  February 2018 Published  May 2018

Fund Project: This paper was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education (NRF-2016R1D1A1B03932096).

In this paper, we consider the viscoelastic equation with Balakrishnan-Taylor damping and acoustic boundary conditions. This work is devoted to prove, under suitable conditions on the initial data, the global existence and uniform decay rate of the solutions when the relaxation function is not necessarily of exponential or polynomial type.

Citation: Tae Gab Ha. On the viscoelastic equation with Balakrishnan-Taylor damping and acoustic boundary conditions. Evolution Equations & Control Theory, 2018, 7 (2) : 281-291. doi: 10.3934/eect.2018014
References:
[1]

A. V. Balakrishnan and L. W. Taylor, Distributed Parameter Nonlinear Damping Models for Flight Structures, in Proceedings "Damping 89", Flight Dynamics Lab and Air Force Wright Aeronautical Labs, WPAFB, 1989. Google Scholar

[2]

R. W. Bass and D. Zes, Spillover, nonlinearity and flexible structures, in The Fourth NASA Workshop on Computational Control of Flexible Aerospace Systems, NASA Conference Publication 10065 (ed. L. W. Taylor), (1991), 1–14. doi: 10.1109/CDC.1991.261683.  Google Scholar

[3]

J. T. Beale, Spectral properties of an acoustic boundary condition, Indiana Univ. Math. J., 25 (1976), 895-917.  doi: 10.1512/iumj.1976.25.25071.  Google Scholar

[4]

J. T. Beale, Acoustic scattering from locally reacting surfaces, Indiana Univ. Math. J., 26 (1977), 199-222.  doi: 10.1512/iumj.1977.26.26015.  Google Scholar

[5]

J. T. Beale and S. I. Rosencrans, Acoustic boundary conditions, Bull. Amer. Math. Soc., 80 (1974), 1276-1278.  doi: 10.1090/S0002-9904-1974-13714-6.  Google Scholar

[6]

Y. Boukhatem and B. Benabderramane, Existence and decay of solutions for a viscoelastic wave equation with acoustic boundary conditions, Nonlinear Anal., 97 (2014), 191-209.  doi: 10.1016/j.na.2013.11.019.  Google Scholar

[7]

M. M. CavalcantiV. N. Domingos Cavalcanti and P. Martinez, General decay rate estimates for viscoelastic dissipative systems, Nonlinear Anal., 68 (2008), 177-193.  doi: 10.1016/j.na.2006.10.040.  Google Scholar

[8]

A. T. CousinC. L. Frota and N. A. Larkin, On a system of Klein-Gordon type equations with acoustic boundary conditions, J. Math. Anal. Appl., 293 (2004), 293-309.  doi: 10.1016/j.jmaa.2004.01.007.  Google Scholar

[9]

N. Fourrier and I. Lasiecka, Regularity and stability of a wave equation with a strong damping and dynaamic boundary conditions, Evol. Equ. Control Theory, 2 (2013), 631-667.  doi: 10.3934/eect.2013.2.631.  Google Scholar

[10]

C. L. Frota and J. A. Goldstein, Some Nonlinear wave equations with acoustic boundary conditins, J. Differential equations, 164 (2000), 92-109.  doi: 10.1006/jdeq.1999.3743.  Google Scholar

[11]

C. L. Frota and N. A. Larkin, Uniform stabilization for a hyperbolic equation with acoustic boundary conditions in simple connected domains, Progr. Nonlinear Differential Equations Appl., 66 (2006), 297-312.  doi: 10.1007/3-7643-7401-2_20.  Google Scholar

[12]

T. G. Ha, Asymptotic stability of the viscoelastic equation with variable coefficients and the Balakrishnan-Taylor damping, Taiwanese J. Math., To appear. doi: 10.11650/tjm/171203.  Google Scholar

[13]

T. G. Ha, General decay estimates for the wave equation with acoustic boundary conditions in domains with nonlocally reacting boundary, Appl. Math. Lett., 60 (2016), 43-49.  doi: 10.1016/j.aml.2016.04.006.  Google Scholar

[14]

T. G. Ha, General decay rate estimates for viscoelastic wave equation with Balakrishnan-Taylor damping, Z. Angew. Math. Phys., 67 (2016), Art. 32, 17 pp. doi: 10.1007/s00033-016-0625-3.  Google Scholar

[15]

T. G. Ha, Global existence and general decay estimates for the viscoelastic equation with acoustic boundary conditions, Discrete Contin. Dyn. Syst., 36 (2016), 6899-6919.  doi: 10.3934/dcds.2016100.  Google Scholar

[16]

T. G. Ha, On viscoelastic wave equation with nonlinear boundary damping and source term, Commun. Pur. Appl. Anal., 9 (2010), 1543-1576.  doi: 10.3934/cpaa.2010.9.1543.  Google Scholar

[17]

T. G. Ha, Energy decay for the wave equation of variable coefficients with acoustic boundary conditions in domains with nonlocally reacting boundary, Appl. Math. Lett., 76 (2018), 201-207.  doi: 10.1016/j.aml.2017.09.005.  Google Scholar

[18]

T. G. Ha and J. Y. Park, Existence of solutions for the Kirchhoff-type wave equation with memory term and acoustic boundary conditions, Numer. Funct. Anal. Optim., 31 (2010), 921-935.  doi: 10.1080/01630563.2010.498301.  Google Scholar

[19]

T. G. Ha and J. Y. Park, On coupled Klein-Gordon-Schrödinger equations with acoustic boundary conditions, Bound. Value Probl., 2010 (2010), Art. ID 132751, 23pp. doi: 10.1155/2010/132751.  Google Scholar

[20]

T. G. Ha, Stabilization for the wave equation with variable coefficients and Balakrishnan-Taylor damping, Taiwanese J. Math., 21 (2017), 807-817.  doi: 10.11650/tjm/7828.  Google Scholar

[21]

P. Jameson Graber and I. Lasiecka, Analyticity and Gevrey class regularity for a strongly damped wave equation with hyperbolic dynamic boundary conditions, Semigroup Forum, 88 (2014), 333-365.  doi: 10.1007/s00233-013-9534-3.  Google Scholar

[22]

P. Jameson Graber and B. Said-Houari, On the wave equation with semilinear porous acoustic boundary conditions, J. Differential Equations, 252 (2012), 4898-4941.  doi: 10.1016/j.jde.2012.01.042.  Google Scholar

[23]

P. Jameson Graber, Strong stability and uniform decay of solutions to a wave equation with semilinear porous acoustic boundary conditions, Nonlinear Anal., 74 (2011), 3137-3148.  doi: 10.1016/j.na.2011.01.029.  Google Scholar

[24]

P. Jameson Graber, Wave equation with porous nonlinear acoustic boundary conditions generates a well-posed dynamical system, Nonlinear Anal., 73 (2010), 3058-3068.  doi: 10.1016/j.na.2010.06.075.  Google Scholar

[25]

W. Liu, Arbitrary rate of decay for a viscoelastic equation with acoustic boundary conditions, Appl. Math. Lett., 38 (2014), 155-161.  doi: 10.1016/j.aml.2014.07.022.  Google Scholar

[26]

S. A. Messaoudi, General decay of solution energy in a viscoelastic equation with a nonlinear source, Nonlinear Anal., 69 (2008), 2589-2598.  doi: 10.1016/j.na.2007.08.035.  Google Scholar

[27]

C. Mu and J. Ma, On a system of nonlinear wave equations with Balakrishnan-Taylor damping, Z. Angew. Math. Phys., 65 (2014), 91-113.  doi: 10.1007/s00033-013-0324-2.  Google Scholar

[28]

J. Y. Park and T. G. Ha, Well-posedness and uniform decay rates for the Klein-Gordon equation with damping term and acoustic boundary conditions, J. Math. Phys., 50 (2009), 013506, 18pp. doi: 10.1063/1.3040185.  Google Scholar

[29]

N.-e. Tatar and A. Zaraï, Exponential stability and blow up for a problem with Balakrishnan-Taylor damping, Demonstr. Math., 44 (2011), 67-90.   Google Scholar

[30]

J. Wu, Uniform energy decay of a variable coefficient wave equation with nonlinear acoustic boundary conditions, J. Math. Anal. Appl., 399 (2013), 369-377.  doi: 10.1016/j.jmaa.2012.09.056.  Google Scholar

[31]

Y. You, Inertial manifolds and stabilization of nonlinear beam equaitons with Balakrishnan-Taylor damping, Abstr. Appl. Anal., 1 (1996), 83-102.  doi: 10.1155/S1085337596000048.  Google Scholar

[32]

A. Zaraï and N.-e. Tatar, Global existence and polynomial decay for a problem with Balakrishnan-Taylor damping, Arch. Math.(BRNO), 46 (2010), 157-176.   Google Scholar

[33]

A. ZaraïN.-e. Tatar and A. Abdelmalek, Elastic membrane equation with memory term and nonlinear boundary damping: golbal existence, decay and blowup of the solution, Acta Math. Sci. Ser. B Engl. Ed., 33 (2013), 84-106.  doi: 10.1016/S0252-9602(12)60196-9.  Google Scholar

show all references

References:
[1]

A. V. Balakrishnan and L. W. Taylor, Distributed Parameter Nonlinear Damping Models for Flight Structures, in Proceedings "Damping 89", Flight Dynamics Lab and Air Force Wright Aeronautical Labs, WPAFB, 1989. Google Scholar

[2]

R. W. Bass and D. Zes, Spillover, nonlinearity and flexible structures, in The Fourth NASA Workshop on Computational Control of Flexible Aerospace Systems, NASA Conference Publication 10065 (ed. L. W. Taylor), (1991), 1–14. doi: 10.1109/CDC.1991.261683.  Google Scholar

[3]

J. T. Beale, Spectral properties of an acoustic boundary condition, Indiana Univ. Math. J., 25 (1976), 895-917.  doi: 10.1512/iumj.1976.25.25071.  Google Scholar

[4]

J. T. Beale, Acoustic scattering from locally reacting surfaces, Indiana Univ. Math. J., 26 (1977), 199-222.  doi: 10.1512/iumj.1977.26.26015.  Google Scholar

[5]

J. T. Beale and S. I. Rosencrans, Acoustic boundary conditions, Bull. Amer. Math. Soc., 80 (1974), 1276-1278.  doi: 10.1090/S0002-9904-1974-13714-6.  Google Scholar

[6]

Y. Boukhatem and B. Benabderramane, Existence and decay of solutions for a viscoelastic wave equation with acoustic boundary conditions, Nonlinear Anal., 97 (2014), 191-209.  doi: 10.1016/j.na.2013.11.019.  Google Scholar

[7]

M. M. CavalcantiV. N. Domingos Cavalcanti and P. Martinez, General decay rate estimates for viscoelastic dissipative systems, Nonlinear Anal., 68 (2008), 177-193.  doi: 10.1016/j.na.2006.10.040.  Google Scholar

[8]

A. T. CousinC. L. Frota and N. A. Larkin, On a system of Klein-Gordon type equations with acoustic boundary conditions, J. Math. Anal. Appl., 293 (2004), 293-309.  doi: 10.1016/j.jmaa.2004.01.007.  Google Scholar

[9]

N. Fourrier and I. Lasiecka, Regularity and stability of a wave equation with a strong damping and dynaamic boundary conditions, Evol. Equ. Control Theory, 2 (2013), 631-667.  doi: 10.3934/eect.2013.2.631.  Google Scholar

[10]

C. L. Frota and J. A. Goldstein, Some Nonlinear wave equations with acoustic boundary conditins, J. Differential equations, 164 (2000), 92-109.  doi: 10.1006/jdeq.1999.3743.  Google Scholar

[11]

C. L. Frota and N. A. Larkin, Uniform stabilization for a hyperbolic equation with acoustic boundary conditions in simple connected domains, Progr. Nonlinear Differential Equations Appl., 66 (2006), 297-312.  doi: 10.1007/3-7643-7401-2_20.  Google Scholar

[12]

T. G. Ha, Asymptotic stability of the viscoelastic equation with variable coefficients and the Balakrishnan-Taylor damping, Taiwanese J. Math., To appear. doi: 10.11650/tjm/171203.  Google Scholar

[13]

T. G. Ha, General decay estimates for the wave equation with acoustic boundary conditions in domains with nonlocally reacting boundary, Appl. Math. Lett., 60 (2016), 43-49.  doi: 10.1016/j.aml.2016.04.006.  Google Scholar

[14]

T. G. Ha, General decay rate estimates for viscoelastic wave equation with Balakrishnan-Taylor damping, Z. Angew. Math. Phys., 67 (2016), Art. 32, 17 pp. doi: 10.1007/s00033-016-0625-3.  Google Scholar

[15]

T. G. Ha, Global existence and general decay estimates for the viscoelastic equation with acoustic boundary conditions, Discrete Contin. Dyn. Syst., 36 (2016), 6899-6919.  doi: 10.3934/dcds.2016100.  Google Scholar

[16]

T. G. Ha, On viscoelastic wave equation with nonlinear boundary damping and source term, Commun. Pur. Appl. Anal., 9 (2010), 1543-1576.  doi: 10.3934/cpaa.2010.9.1543.  Google Scholar

[17]

T. G. Ha, Energy decay for the wave equation of variable coefficients with acoustic boundary conditions in domains with nonlocally reacting boundary, Appl. Math. Lett., 76 (2018), 201-207.  doi: 10.1016/j.aml.2017.09.005.  Google Scholar

[18]

T. G. Ha and J. Y. Park, Existence of solutions for the Kirchhoff-type wave equation with memory term and acoustic boundary conditions, Numer. Funct. Anal. Optim., 31 (2010), 921-935.  doi: 10.1080/01630563.2010.498301.  Google Scholar

[19]

T. G. Ha and J. Y. Park, On coupled Klein-Gordon-Schrödinger equations with acoustic boundary conditions, Bound. Value Probl., 2010 (2010), Art. ID 132751, 23pp. doi: 10.1155/2010/132751.  Google Scholar

[20]

T. G. Ha, Stabilization for the wave equation with variable coefficients and Balakrishnan-Taylor damping, Taiwanese J. Math., 21 (2017), 807-817.  doi: 10.11650/tjm/7828.  Google Scholar

[21]

P. Jameson Graber and I. Lasiecka, Analyticity and Gevrey class regularity for a strongly damped wave equation with hyperbolic dynamic boundary conditions, Semigroup Forum, 88 (2014), 333-365.  doi: 10.1007/s00233-013-9534-3.  Google Scholar

[22]

P. Jameson Graber and B. Said-Houari, On the wave equation with semilinear porous acoustic boundary conditions, J. Differential Equations, 252 (2012), 4898-4941.  doi: 10.1016/j.jde.2012.01.042.  Google Scholar

[23]

P. Jameson Graber, Strong stability and uniform decay of solutions to a wave equation with semilinear porous acoustic boundary conditions, Nonlinear Anal., 74 (2011), 3137-3148.  doi: 10.1016/j.na.2011.01.029.  Google Scholar

[24]

P. Jameson Graber, Wave equation with porous nonlinear acoustic boundary conditions generates a well-posed dynamical system, Nonlinear Anal., 73 (2010), 3058-3068.  doi: 10.1016/j.na.2010.06.075.  Google Scholar

[25]

W. Liu, Arbitrary rate of decay for a viscoelastic equation with acoustic boundary conditions, Appl. Math. Lett., 38 (2014), 155-161.  doi: 10.1016/j.aml.2014.07.022.  Google Scholar

[26]

S. A. Messaoudi, General decay of solution energy in a viscoelastic equation with a nonlinear source, Nonlinear Anal., 69 (2008), 2589-2598.  doi: 10.1016/j.na.2007.08.035.  Google Scholar

[27]

C. Mu and J. Ma, On a system of nonlinear wave equations with Balakrishnan-Taylor damping, Z. Angew. Math. Phys., 65 (2014), 91-113.  doi: 10.1007/s00033-013-0324-2.  Google Scholar

[28]

J. Y. Park and T. G. Ha, Well-posedness and uniform decay rates for the Klein-Gordon equation with damping term and acoustic boundary conditions, J. Math. Phys., 50 (2009), 013506, 18pp. doi: 10.1063/1.3040185.  Google Scholar

[29]

N.-e. Tatar and A. Zaraï, Exponential stability and blow up for a problem with Balakrishnan-Taylor damping, Demonstr. Math., 44 (2011), 67-90.   Google Scholar

[30]

J. Wu, Uniform energy decay of a variable coefficient wave equation with nonlinear acoustic boundary conditions, J. Math. Anal. Appl., 399 (2013), 369-377.  doi: 10.1016/j.jmaa.2012.09.056.  Google Scholar

[31]

Y. You, Inertial manifolds and stabilization of nonlinear beam equaitons with Balakrishnan-Taylor damping, Abstr. Appl. Anal., 1 (1996), 83-102.  doi: 10.1155/S1085337596000048.  Google Scholar

[32]

A. Zaraï and N.-e. Tatar, Global existence and polynomial decay for a problem with Balakrishnan-Taylor damping, Arch. Math.(BRNO), 46 (2010), 157-176.   Google Scholar

[33]

A. ZaraïN.-e. Tatar and A. Abdelmalek, Elastic membrane equation with memory term and nonlinear boundary damping: golbal existence, decay and blowup of the solution, Acta Math. Sci. Ser. B Engl. Ed., 33 (2013), 84-106.  doi: 10.1016/S0252-9602(12)60196-9.  Google Scholar

[1]

Xing Wu, Keqin Su. Global existence and optimal decay rate of solutions to hyperbolic chemotaxis system in Besov spaces. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021002

[2]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, 2021, 20 (1) : 389-404. doi: 10.3934/cpaa.2020273

[3]

Vandana Sharma. Global existence and uniform estimates of solutions to reaction diffusion systems with mass transport type boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021001

[4]

Biyue Chen, Chunxiang Zhao, Chengkui Zhong. The global attractor for the wave equation with nonlocal strong damping. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021015

[5]

Wenbin Lv, Qingyuan Wang. Global existence for a class of Keller-Segel models with signal-dependent motility and general logistic term. Evolution Equations & Control Theory, 2021, 10 (1) : 25-36. doi: 10.3934/eect.2020040

[6]

Yang Liu. Global existence and exponential decay of strong solutions to the cauchy problem of 3D density-dependent Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1291-1303. doi: 10.3934/dcdsb.2020163

[7]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (1) : 301-317. doi: 10.3934/cpaa.2020267

[8]

Fang Li, Bo You. On the dimension of global attractor for the Cahn-Hilliard-Brinkman system with dynamic boundary conditions. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021024

[9]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[10]

Zheng Han, Daoyuan Fang. Almost global existence for the Klein-Gordon equation with the Kirchhoff-type nonlinearity. Communications on Pure & Applied Analysis, 2021, 20 (2) : 737-754. doi: 10.3934/cpaa.2020287

[11]

Xiaoping Zhai, Yongsheng Li. Global large solutions and optimal time-decay estimates to the Korteweg system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1387-1413. doi: 10.3934/dcds.2020322

[12]

Patrick Martinez, Judith Vancostenoble. Lipschitz stability for the growth rate coefficients in a nonlinear Fisher-KPP equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 695-721. doi: 10.3934/dcdss.2020362

[13]

Dorothee Knees, Chiara Zanini. Existence of parameterized BV-solutions for rate-independent systems with discontinuous loads. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 121-149. doi: 10.3934/dcdss.2020332

[14]

Xueli Bai, Fang Li. Global dynamics of competition models with nonsymmetric nonlocal dispersals when one diffusion rate is small. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3075-3092. doi: 10.3934/dcds.2020035

[15]

Ali Wehbe, Rayan Nasser, Nahla Noun. Stability of N-D transmission problem in viscoelasticity with localized Kelvin-Voigt damping under different types of geometric conditions. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020050

[16]

Yubiao Liu, Chunguo Zhang, Tehuan Chen. Stabilization of 2-d Mindlin-Timoshenko plates with localized acoustic boundary feedback. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021006

[17]

Roland Schnaubelt, Martin Spitz. Local wellposedness of quasilinear Maxwell equations with absorbing boundary conditions. Evolution Equations & Control Theory, 2021, 10 (1) : 155-198. doi: 10.3934/eect.2020061

[18]

Kuntal Bhandari, Franck Boyer. Boundary null-controllability of coupled parabolic systems with Robin conditions. Evolution Equations & Control Theory, 2021, 10 (1) : 61-102. doi: 10.3934/eect.2020052

[19]

Qianqian Hou, Tai-Chia Lin, Zhi-An Wang. On a singularly perturbed semi-linear problem with Robin boundary conditions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 401-414. doi: 10.3934/dcdsb.2020083

[20]

Wenrui Hao, King-Yeung Lam, Yuan Lou. Ecological and evolutionary dynamics in advective environments: Critical domain size and boundary conditions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 367-400. doi: 10.3934/dcdsb.2020283

2019 Impact Factor: 0.953

Metrics

  • PDF downloads (129)
  • HTML views (207)
  • Cited by (3)

Other articles
by authors

[Back to Top]