
-
Previous Article
Optimal nonlinearity control of Schrödinger equation
- EECT Home
- This Issue
-
Next Article
On the viscoelastic equation with Balakrishnan-Taylor damping and acoustic boundary conditions
Asymptotic behavior of a hierarchical size-structured population model
School of Mathematical Sciences, Shanghai Key Laboratory of PMMP, East China Normal University, Shanghai 200241, China |
We study in this paper a hierarchical size-structured population dynamics model with environment feedback and delayed birth process. We are concerned with the asymptotic behavior, particularly on the effects of hierarchical structure and time lag on the long-time dynamics of the considered system. We formally linearize the system around a steady state and study the linearized system by $C_0-{\rm{semigroup}}$ framework and spectral analysis methods. Then we use the analytical results to establish the linearized stability, instability and asynchronous exponential growth conclusions under some conditions. Finally, some examples are presented and simulated to illustrate the obtained results.
References:
[1] |
A. S. Ackleh, K. Deng and S. Hu,
A quasilinear hierarchical size-structured model: Well-posedness and approximation, Appl. Math. Optim., 51 (2005), 35-59.
doi: 10.1007/s00245-004-0806-2. |
[2] |
A. S. Ackleh and K. Ito,
Measure-valued solutions for a hierarchically size-structured population, J. Diff. Equ., 217 (2005), 431-455.
doi: 10.1016/j.jde.2004.12.013. |
[3] |
A. Bátkai and S. Piazzera,
Semigroups and linear partial differential equations with delay, J. Math. Anal. Appl., 264 (2001), 1-20.
doi: 10.1006/jmaa.2001.6705. |
[4] |
G. Di Blasio,
Nonlinear age-dependent population growth with history-dependent birth rate, Math. Biosci., 46 (1979), 279-291.
doi: 10.1016/0025-5564(79)90073-7. |
[5] |
M. Boulanouar,
The asymptotic behavior of a structured cell population, J. Evol. Equ., 11 (2011), 531-552.
doi: 10.1007/s00028-011-0100-8. |
[6] |
À. Calsina and J. Saldaña,
Asymptotic behavior of a model of hierarchically structured population dynamics, J. Math. Biol., 35 (1997), 967-987.
doi: 10.1007/s002850050085. |
[7] |
J. M. Cushing,
The dynamics of hierarchical age-structured populations, J. Math. Biol., 32 (1994), 705-729.
doi: 10.1007/BF00163023. |
[8] |
J. M. Cushing and S. R.-J. Jang,
Dynamics of hierarchical models in discrete time, J. Diff. Equ. Appl., 11 (2005), 95-115.
doi: 10.1080/10236190512331328343. |
[9] |
O. Diekmann, Ph. Getto and M. Gyllenberg,
Stability and bifurcation analysis of Volterra functional equations in the light of suns and stars, SIAM J. Math. Anal., 39 (2007), 1023-1069.
doi: 10.1137/060659211. |
[10] |
O. Diekmann and M. Gyllenberg, Abstract delay equations inspired by population dynamics, in Functional Analysis and Evolution Equations (Eds. H. Amann, W. Arendt, M. Hieber, F. Neubrander, S. Nicaise and J. von Below), Birkhäuser, 2008, 187-200.
doi: 10.1007/978-3-7643-7794-6_12. |
[11] |
O. Diekmann, M. Gyllenberg and J. A. J. Metz,
Steady state analysis of structured population models, Theoret. Population Biol., 63 (2003), 309-338.
doi: 10.1016/S0040-5809(02)00058-8. |
[12] |
K. J. Engel,
Operator matrices and systems of evolution equations, RIMS Kokyuroku, 966 (1996), 61-80.
|
[13] |
K. J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Springer, New York, 2000. |
[14] |
J. Z. Farkas and T. Hagen,
Hierarchical size-structured populations: The linearized semigroup
approach, Dyn. Contin. Discr. Impuls. Syst. Ser. A, 17 (2010), 639-657.
|
[15] |
J. Z. Farkas and T. Hagen,
Stability and regularity results for a size-structured population
model, J. Math. Anal. Appl., 328 (2007), 119-136.
doi: 10.1016/j.jmaa.2006.05.032. |
[16] |
J. Z. Farkas and T. Hagen,
Asymptotic analysis of a size-structured cannibalism model with
infinite dimensional environmental feedback, Comm. Pure Appl. Anal., 8 (2009), 1825-1839.
doi: 10.3934/cpaa.2009.8.1825. |
[17] |
G. Fragnelli, A. Idrissi and L. Maniar,
The asymptotic behavior of a population equation
with diffusion and delayed birth process, Discr. Cont. Dyn. Syst. B, 7 (2007), 735-754.
doi: 10.3934/dcdsb.2007.7.735. |
[18] |
X. Fu and D. Zhu,
Stability results for a size-structured population model with delayed birth
process, Discr. Cont. Dyn. Syst. B, 18 (2013), 109-131.
doi: 10.3934/dcdsb.2013.18.109. |
[19] |
X. Fu and D. Zhu,
Stability analysis for a size-structured juvenile-adult population model, Discr. Cont. Dyn. Syst. B, 19 (2014), 391-417.
doi: 10.3934/dcdsb.2014.19.391. |
[20] |
G. Greiner,
A typical Perron-Frobenius theorem with applications to an age-dependent populationequation, Lect. Notes in Math., 1076 (1984), 86-100.
doi: 10.1007/BFb0072769. |
[21] |
G. Greiner,
Perturbing the boundary conditions of a generator, Houston J. Math., 13 (1987), 213-229.
|
[22] |
G. Greiner and R. Nagel, Growth of cell populations via one-parameter semigroups of positive operators, Mathematics Applied to Science(New Orleans, La., 1986), Academic Press, 1988, 79-105. |
[23] |
M. Gyllenberg and G. F. Webb,
Asynchronous exponential growth of semigroups of nonlinear
operators, J. Math. Anal. Appl., 167 (1992), 443-467.
doi: 10.1016/0022-247X(92)90218-3. |
[24] |
E. A. Kraev,
Existence and uniqueness results for height structured hierarchical population
models, Natur. Resource Modeling, 14 (2001), 45-70.
doi: 10.1111/j.1939-7445.2001.tb00050.x. |
[25] |
A. J. Metz and O. Diekmann, The Dynamics of Psyiologically Structured Populations, Springer, Berlin, 1986.
doi: 10.1007/978-3-662-13159-6. |
[26] |
R. Nagel,
The spectrum of unbounded operator matrices with non-diagonal domain, J. Funct. Anal., 89 (1990), 291-302.
doi: 10.1016/0022-1236(90)90096-4. |
[27] |
R. Nagel, G. Nickel and S. Romanelli,
Identification of extrapolation spaces for unbounded
operators, Quaest. Math., 19 (1996), 83-100.
doi: 10.1080/16073606.1996.9631827. |
[28] |
R. Nagel, (ed.), One-Parameter Semigroups of Positive Operators, Lect. Notes in Math. 1184, Springer-Verlag, 1986. Google Scholar |
[29] |
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, New York, 1983.
doi: 10.1007/978-1-4612-5561-1. |
[30] |
S. Pizzera,
An age dependent population equation with delayed birth press, Math. Meth. Appl. Sci., 27 (2004), 427-439.
doi: 10.1002/mma.462. |
[31] |
S. Pizzera and L. Tonetto,
Asynchronous exponential growth for an age dependent population
equation with delayed birth process, J. Evol. Equ., 5 (2005), 61-77.
doi: 10.1007/s00028-004-0159-6. |
[32] |
A. Rhandi and R. Schnaubelt,
Asymptotic behavior of a non-autonomous population equation
with diffusion in L1, Discr. Cont. Dyn. Syst., 5 (1999), 663-683.
doi: 10.3934/dcds.1999.5.663. |
[33] |
K. E. Swick,
A nonlinear age-dependent model of single species population dynamics, SIAM J. Appl. Math., 32 (1977), 484-498.
doi: 10.1137/0132040. |
[34] |
K. E. Swick,
Periodic solutions of a nonlinear age-dependent model of single species population dynamics, SIAM J. Math. Anal., 11 (1980), 901-910.
doi: 10.1137/0511080. |
[35] |
J. Voigt,
A perturbation theorem for the essential spectral radius of strongly continuous semigroups, Monatsh. Math., 90 (1980), 153-161.
doi: 10.1007/BF01303264. |
[36] |
G. F. Webb, Theory of Nonlinear Age-dependent Population Dynamics, Marcell Dekker, New York, 1985. |
[37] |
D. Yan and X. Fu,
The asymptotic behavior of an age-cycle structured cell model with delay, J. Dyn. Cont. Syst., 22 (2016), 441-458.
doi: 10.1007/s10883-015-9285-4. |
[38] |
D. Yan and X. Fu,
Asymptotic analysis of a spatially and size-structured population model
with delyaed birth process, Comm. Pure Appl. Anal., 15 (2016), 637-655.
doi: 10.3934/cpaa.2016.15.637. |
show all references
References:
[1] |
A. S. Ackleh, K. Deng and S. Hu,
A quasilinear hierarchical size-structured model: Well-posedness and approximation, Appl. Math. Optim., 51 (2005), 35-59.
doi: 10.1007/s00245-004-0806-2. |
[2] |
A. S. Ackleh and K. Ito,
Measure-valued solutions for a hierarchically size-structured population, J. Diff. Equ., 217 (2005), 431-455.
doi: 10.1016/j.jde.2004.12.013. |
[3] |
A. Bátkai and S. Piazzera,
Semigroups and linear partial differential equations with delay, J. Math. Anal. Appl., 264 (2001), 1-20.
doi: 10.1006/jmaa.2001.6705. |
[4] |
G. Di Blasio,
Nonlinear age-dependent population growth with history-dependent birth rate, Math. Biosci., 46 (1979), 279-291.
doi: 10.1016/0025-5564(79)90073-7. |
[5] |
M. Boulanouar,
The asymptotic behavior of a structured cell population, J. Evol. Equ., 11 (2011), 531-552.
doi: 10.1007/s00028-011-0100-8. |
[6] |
À. Calsina and J. Saldaña,
Asymptotic behavior of a model of hierarchically structured population dynamics, J. Math. Biol., 35 (1997), 967-987.
doi: 10.1007/s002850050085. |
[7] |
J. M. Cushing,
The dynamics of hierarchical age-structured populations, J. Math. Biol., 32 (1994), 705-729.
doi: 10.1007/BF00163023. |
[8] |
J. M. Cushing and S. R.-J. Jang,
Dynamics of hierarchical models in discrete time, J. Diff. Equ. Appl., 11 (2005), 95-115.
doi: 10.1080/10236190512331328343. |
[9] |
O. Diekmann, Ph. Getto and M. Gyllenberg,
Stability and bifurcation analysis of Volterra functional equations in the light of suns and stars, SIAM J. Math. Anal., 39 (2007), 1023-1069.
doi: 10.1137/060659211. |
[10] |
O. Diekmann and M. Gyllenberg, Abstract delay equations inspired by population dynamics, in Functional Analysis and Evolution Equations (Eds. H. Amann, W. Arendt, M. Hieber, F. Neubrander, S. Nicaise and J. von Below), Birkhäuser, 2008, 187-200.
doi: 10.1007/978-3-7643-7794-6_12. |
[11] |
O. Diekmann, M. Gyllenberg and J. A. J. Metz,
Steady state analysis of structured population models, Theoret. Population Biol., 63 (2003), 309-338.
doi: 10.1016/S0040-5809(02)00058-8. |
[12] |
K. J. Engel,
Operator matrices and systems of evolution equations, RIMS Kokyuroku, 966 (1996), 61-80.
|
[13] |
K. J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Springer, New York, 2000. |
[14] |
J. Z. Farkas and T. Hagen,
Hierarchical size-structured populations: The linearized semigroup
approach, Dyn. Contin. Discr. Impuls. Syst. Ser. A, 17 (2010), 639-657.
|
[15] |
J. Z. Farkas and T. Hagen,
Stability and regularity results for a size-structured population
model, J. Math. Anal. Appl., 328 (2007), 119-136.
doi: 10.1016/j.jmaa.2006.05.032. |
[16] |
J. Z. Farkas and T. Hagen,
Asymptotic analysis of a size-structured cannibalism model with
infinite dimensional environmental feedback, Comm. Pure Appl. Anal., 8 (2009), 1825-1839.
doi: 10.3934/cpaa.2009.8.1825. |
[17] |
G. Fragnelli, A. Idrissi and L. Maniar,
The asymptotic behavior of a population equation
with diffusion and delayed birth process, Discr. Cont. Dyn. Syst. B, 7 (2007), 735-754.
doi: 10.3934/dcdsb.2007.7.735. |
[18] |
X. Fu and D. Zhu,
Stability results for a size-structured population model with delayed birth
process, Discr. Cont. Dyn. Syst. B, 18 (2013), 109-131.
doi: 10.3934/dcdsb.2013.18.109. |
[19] |
X. Fu and D. Zhu,
Stability analysis for a size-structured juvenile-adult population model, Discr. Cont. Dyn. Syst. B, 19 (2014), 391-417.
doi: 10.3934/dcdsb.2014.19.391. |
[20] |
G. Greiner,
A typical Perron-Frobenius theorem with applications to an age-dependent populationequation, Lect. Notes in Math., 1076 (1984), 86-100.
doi: 10.1007/BFb0072769. |
[21] |
G. Greiner,
Perturbing the boundary conditions of a generator, Houston J. Math., 13 (1987), 213-229.
|
[22] |
G. Greiner and R. Nagel, Growth of cell populations via one-parameter semigroups of positive operators, Mathematics Applied to Science(New Orleans, La., 1986), Academic Press, 1988, 79-105. |
[23] |
M. Gyllenberg and G. F. Webb,
Asynchronous exponential growth of semigroups of nonlinear
operators, J. Math. Anal. Appl., 167 (1992), 443-467.
doi: 10.1016/0022-247X(92)90218-3. |
[24] |
E. A. Kraev,
Existence and uniqueness results for height structured hierarchical population
models, Natur. Resource Modeling, 14 (2001), 45-70.
doi: 10.1111/j.1939-7445.2001.tb00050.x. |
[25] |
A. J. Metz and O. Diekmann, The Dynamics of Psyiologically Structured Populations, Springer, Berlin, 1986.
doi: 10.1007/978-3-662-13159-6. |
[26] |
R. Nagel,
The spectrum of unbounded operator matrices with non-diagonal domain, J. Funct. Anal., 89 (1990), 291-302.
doi: 10.1016/0022-1236(90)90096-4. |
[27] |
R. Nagel, G. Nickel and S. Romanelli,
Identification of extrapolation spaces for unbounded
operators, Quaest. Math., 19 (1996), 83-100.
doi: 10.1080/16073606.1996.9631827. |
[28] |
R. Nagel, (ed.), One-Parameter Semigroups of Positive Operators, Lect. Notes in Math. 1184, Springer-Verlag, 1986. Google Scholar |
[29] |
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, New York, 1983.
doi: 10.1007/978-1-4612-5561-1. |
[30] |
S. Pizzera,
An age dependent population equation with delayed birth press, Math. Meth. Appl. Sci., 27 (2004), 427-439.
doi: 10.1002/mma.462. |
[31] |
S. Pizzera and L. Tonetto,
Asynchronous exponential growth for an age dependent population
equation with delayed birth process, J. Evol. Equ., 5 (2005), 61-77.
doi: 10.1007/s00028-004-0159-6. |
[32] |
A. Rhandi and R. Schnaubelt,
Asymptotic behavior of a non-autonomous population equation
with diffusion in L1, Discr. Cont. Dyn. Syst., 5 (1999), 663-683.
doi: 10.3934/dcds.1999.5.663. |
[33] |
K. E. Swick,
A nonlinear age-dependent model of single species population dynamics, SIAM J. Appl. Math., 32 (1977), 484-498.
doi: 10.1137/0132040. |
[34] |
K. E. Swick,
Periodic solutions of a nonlinear age-dependent model of single species population dynamics, SIAM J. Math. Anal., 11 (1980), 901-910.
doi: 10.1137/0511080. |
[35] |
J. Voigt,
A perturbation theorem for the essential spectral radius of strongly continuous semigroups, Monatsh. Math., 90 (1980), 153-161.
doi: 10.1007/BF01303264. |
[36] |
G. F. Webb, Theory of Nonlinear Age-dependent Population Dynamics, Marcell Dekker, New York, 1985. |
[37] |
D. Yan and X. Fu,
The asymptotic behavior of an age-cycle structured cell model with delay, J. Dyn. Cont. Syst., 22 (2016), 441-458.
doi: 10.1007/s10883-015-9285-4. |
[38] |
D. Yan and X. Fu,
Asymptotic analysis of a spatially and size-structured population model
with delyaed birth process, Comm. Pure Appl. Anal., 15 (2016), 637-655.
doi: 10.3934/cpaa.2016.15.637. |





[1] |
Thazin Aye, Guanyu Shang, Ying Su. On a stage-structured population model in discrete periodic habitat: III. unimodal growth and delay effect. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021005 |
[2] |
Mugen Huang, Moxun Tang, Jianshe Yu, Bo Zheng. A stage structured model of delay differential equations for Aedes mosquito population suppression. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3467-3484. doi: 10.3934/dcds.2020042 |
[3] |
João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138 |
[4] |
Ebraheem O. Alzahrani, Muhammad Altaf Khan. Androgen driven evolutionary population dynamics in prostate cancer growth. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020426 |
[5] |
Wenrui Hao, King-Yeung Lam, Yuan Lou. Ecological and evolutionary dynamics in advective environments: Critical domain size and boundary conditions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 367-400. doi: 10.3934/dcdsb.2020283 |
[6] |
Patrick Martinez, Judith Vancostenoble. Lipschitz stability for the growth rate coefficients in a nonlinear Fisher-KPP equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 695-721. doi: 10.3934/dcdss.2020362 |
[7] |
Cheng Peng, Zhaohui Tang, Weihua Gui, Qing Chen, Jing He. A bidirectional weighted boundary distance algorithm for time series similarity computation based on optimized sliding window size. Journal of Industrial & Management Optimization, 2021, 17 (1) : 205-220. doi: 10.3934/jimo.2019107 |
[8] |
Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020108 |
[9] |
Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020340 |
[10] |
Larissa Fardigola, Kateryna Khalina. Controllability problems for the heat equation on a half-axis with a bounded control in the Neumann boundary condition. Mathematical Control & Related Fields, 2021, 11 (1) : 211-236. doi: 10.3934/mcrf.2020034 |
[11] |
Md. Masum Murshed, Kouta Futai, Masato Kimura, Hirofumi Notsu. Theoretical and numerical studies for energy estimates of the shallow water equations with a transmission boundary condition. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1063-1078. doi: 10.3934/dcdss.2020230 |
[12] |
Tomáš Bodnár, Philippe Fraunié, Petr Knobloch, Hynek Řezníček. Numerical evaluation of artificial boundary condition for wall-bounded stably stratified flows. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 785-801. doi: 10.3934/dcdss.2020333 |
[13] |
Huijuan Song, Bei Hu, Zejia Wang. Stationary solutions of a free boundary problem modeling the growth of vascular tumors with a necrotic core. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 667-691. doi: 10.3934/dcdsb.2020084 |
[14] |
Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020316 |
[15] |
Stefan Ruschel, Serhiy Yanchuk. The spectrum of delay differential equations with multiple hierarchical large delays. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 151-175. doi: 10.3934/dcdss.2020321 |
[16] |
Stefan Siegmund, Petr Stehlík. Time scale-induced asynchronous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1011-1029. doi: 10.3934/dcdsb.2020151 |
[17] |
Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020467 |
[18] |
Zhihua Liu, Yayun Wu, Xiangming Zhang. Existence of periodic wave trains for an age-structured model with diffusion. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021009 |
[19] |
Russell Ricks. The unique measure of maximal entropy for a compact rank one locally CAT(0) space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 507-523. doi: 10.3934/dcds.2020266 |
[20] |
Laurent Di Menza, Virginie Joanne-Fabre. An age group model for the study of a population of trees. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020464 |
2019 Impact Factor: 0.953
Tools
Metrics
Other articles
by authors
[Back to Top]