
-
Previous Article
Rate of convergence of inertial gradient dynamics with time-dependent viscous damping coefficient
- EECT Home
- This Issue
- Next Article
Energy decay for the damped wave equation on an unbounded network
UR13ES64, Analysis and Control of PDEs, Faculty of Sciences of Monastir, University of Monastir, Monastir, 5019, Tunisia |
We study the wave equation on an unbounded network of $N, N∈\mathbb{N}^*$, finite strings and a semi-infinite one with a single vertex identified to 0. We consider continuity and dissipation conditions at the vertex and Dirichlet conditions at the extremities of the finite edges. The dissipation is given by a damping constant $α>0$ via the condition $\sum_{j = 0}^N\partial_xu_j(0, t) = α \partial_tu_0(0, t)$. We give a complete spectral description and we use it to study the energy decay of the solution. We prove that for $α\not = N+1$ we have an exponential decay of the energy and we give an explicit formula for the decay rate when the finite edges have the same length.
References:
[1] |
F. Alabau-Boussouira, V. Perrolaz and L. Rosier,
Finite-time stabilization of a network of strings, Mathematical Control and Related Fields, AIMS, 5 (2015), 721-742.
doi: 10.3934/mcrf.2015.5.721. |
[2] |
L. Aloui and M. Khenissi,
Stabilisation de l'équation des ondes dans un domaine extérieur, Rev. Math. Iberoamericana, 18 (2002), 1-16.
doi: 10.4171/RMI/309. |
[3] |
K. Ammari, M. Jellouli and M. Khenissi,
Stabilization of generic trees of strings, J. Dyn. Contol Syst., 11 (2005), 177-193.
doi: 10.1007/s10883-005-4169-7. |
[4] |
K. Ammari and M. Jellouli,
Remark on stabilization of tree-shaped networks of strings, Applications of Mathematics, 52 (2015), 327-343.
doi: 10.1007/s10492-007-0018-1. |
[5] |
K. Ammari and M. Jellouli,
Méthode numérique pour la déroissance de l'éergie d'un réseau de cordes, Bulletin of the Belgian Mathematical Society, 4 (2010), 717-735.
|
[6] |
R. Assel, M. Jellouli and M. Khenissi,
Optimal decay rate for the local energy of a unbounded network, J. Differential Equations, 261 (2016), 4030-4054.
doi: 10.1016/j.jde.2016.06.016. |
[7] |
R. Assel, M. Khenissi and J. Royer, Energy Decay for a Unbounded Degenerate Network, work in progress. |
[8] |
R. Dager and H. Zuazua, Wave propagation, observation and control in 1-d flexible multi-structures, Mathématiques & Applications, 50 (2006), x+221 pp.
doi: 10.1007/3-540-37726-3. |
[9] |
K. J. Engel and R. Nagel, One Parameter Semigroups for Linear Evolution Equations, Graduate Texts in Mathematics, Springer-Verlag, New York, 2000. |
[10] |
P. D. Hislop and I. M. Sigal, Introduction to Spectral Theory, Applied Mathematical Sciences, 113. Springer-Verlag, New York, 1996.
doi: 10.1007/978-1-4612-0741-2. |
[11] |
M. Jellouli,
Spectral analysis for a degenerate tree and applications, International Journal of Control, 88 (2015), 1647-1662.
doi: 10.1080/00207179.2015.1012652. |
[12] |
M. Khenissi,
Equation des ondes amorties dans un domaine extérieur, Bull. Soc. math. France, 131 (2003), 211-228.
doi: 10.24033/bsmf.2440. |
[13] |
P. Kuchment,
Quantum graphs: Ⅰ. Some basic structures, Ⅱ. Some spectral properties of quantum and combinatorial graphs, J. Phys. A: Math. Gen, 14 (2004), S107-S128.
doi: 10.1088/0959-7174/14/1/014. |
[14] |
J. E. Lagnese, G. Leugering and E. J. P. G. Schmidt, Modeling, Analysis and Control of Multi-Link Flexible Structures, Systems and Control: Foundations and Applications, Birkhauser, Basel, 1994.
doi: 10.1007/978-1-4612-0273-8. |
[15] |
N. E. Mastorakis and G. Q. Xu,
Spectral distribution of star-shaped coupled network, WSEAS Transactions on Applied and Theoretical Mechanics, 4 (2008), 739-746.
|
[16] |
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, 44, Springer-Verlag, New York, 1983.
doi: 10.1007/978-1-4612-5561-1. |
[17] |
H. Reinhard, Equations Différentielles, Fondements et Applications, Dunod, Paris, 1982. |
[18] |
S.-H. Tang and M. Zworski,
Resonance expansions of scattered waves, Comm. Pure. Appl. Math., 53 (2000), 1305-1334.
|
[19] |
B. Vainberg, Asymptotic Methods in Equations of Mathematical Physics, Gordon and Breach, New York, 1989. |
[20] |
B. Vainberg,
On the short wave asymptotic behavior of solutions of stationary problems and asymptotic behavior as t→+∞ of solutions of non-stationary problems, Uspehi Mat. Nauk, 30 (1975), 3-55.
|
[21] |
G. Vodev,
On the uniform decay of the local energy, Serdica Math. J., 25 (1999), 191-206.
|
[22] |
Y. N. Xu and G. Q. Xu,
Exponential stabilization of a tree- shaped network of strings with variable coefficients, Glasgow Math. J., 53 (2011), 481-499.
doi: 10.1017/S0017089511000085. |
show all references
References:
[1] |
F. Alabau-Boussouira, V. Perrolaz and L. Rosier,
Finite-time stabilization of a network of strings, Mathematical Control and Related Fields, AIMS, 5 (2015), 721-742.
doi: 10.3934/mcrf.2015.5.721. |
[2] |
L. Aloui and M. Khenissi,
Stabilisation de l'équation des ondes dans un domaine extérieur, Rev. Math. Iberoamericana, 18 (2002), 1-16.
doi: 10.4171/RMI/309. |
[3] |
K. Ammari, M. Jellouli and M. Khenissi,
Stabilization of generic trees of strings, J. Dyn. Contol Syst., 11 (2005), 177-193.
doi: 10.1007/s10883-005-4169-7. |
[4] |
K. Ammari and M. Jellouli,
Remark on stabilization of tree-shaped networks of strings, Applications of Mathematics, 52 (2015), 327-343.
doi: 10.1007/s10492-007-0018-1. |
[5] |
K. Ammari and M. Jellouli,
Méthode numérique pour la déroissance de l'éergie d'un réseau de cordes, Bulletin of the Belgian Mathematical Society, 4 (2010), 717-735.
|
[6] |
R. Assel, M. Jellouli and M. Khenissi,
Optimal decay rate for the local energy of a unbounded network, J. Differential Equations, 261 (2016), 4030-4054.
doi: 10.1016/j.jde.2016.06.016. |
[7] |
R. Assel, M. Khenissi and J. Royer, Energy Decay for a Unbounded Degenerate Network, work in progress. |
[8] |
R. Dager and H. Zuazua, Wave propagation, observation and control in 1-d flexible multi-structures, Mathématiques & Applications, 50 (2006), x+221 pp.
doi: 10.1007/3-540-37726-3. |
[9] |
K. J. Engel and R. Nagel, One Parameter Semigroups for Linear Evolution Equations, Graduate Texts in Mathematics, Springer-Verlag, New York, 2000. |
[10] |
P. D. Hislop and I. M. Sigal, Introduction to Spectral Theory, Applied Mathematical Sciences, 113. Springer-Verlag, New York, 1996.
doi: 10.1007/978-1-4612-0741-2. |
[11] |
M. Jellouli,
Spectral analysis for a degenerate tree and applications, International Journal of Control, 88 (2015), 1647-1662.
doi: 10.1080/00207179.2015.1012652. |
[12] |
M. Khenissi,
Equation des ondes amorties dans un domaine extérieur, Bull. Soc. math. France, 131 (2003), 211-228.
doi: 10.24033/bsmf.2440. |
[13] |
P. Kuchment,
Quantum graphs: Ⅰ. Some basic structures, Ⅱ. Some spectral properties of quantum and combinatorial graphs, J. Phys. A: Math. Gen, 14 (2004), S107-S128.
doi: 10.1088/0959-7174/14/1/014. |
[14] |
J. E. Lagnese, G. Leugering and E. J. P. G. Schmidt, Modeling, Analysis and Control of Multi-Link Flexible Structures, Systems and Control: Foundations and Applications, Birkhauser, Basel, 1994.
doi: 10.1007/978-1-4612-0273-8. |
[15] |
N. E. Mastorakis and G. Q. Xu,
Spectral distribution of star-shaped coupled network, WSEAS Transactions on Applied and Theoretical Mechanics, 4 (2008), 739-746.
|
[16] |
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, 44, Springer-Verlag, New York, 1983.
doi: 10.1007/978-1-4612-5561-1. |
[17] |
H. Reinhard, Equations Différentielles, Fondements et Applications, Dunod, Paris, 1982. |
[18] |
S.-H. Tang and M. Zworski,
Resonance expansions of scattered waves, Comm. Pure. Appl. Math., 53 (2000), 1305-1334.
|
[19] |
B. Vainberg, Asymptotic Methods in Equations of Mathematical Physics, Gordon and Breach, New York, 1989. |
[20] |
B. Vainberg,
On the short wave asymptotic behavior of solutions of stationary problems and asymptotic behavior as t→+∞ of solutions of non-stationary problems, Uspehi Mat. Nauk, 30 (1975), 3-55.
|
[21] |
G. Vodev,
On the uniform decay of the local energy, Serdica Math. J., 25 (1999), 191-206.
|
[22] |
Y. N. Xu and G. Q. Xu,
Exponential stabilization of a tree- shaped network of strings with variable coefficients, Glasgow Math. J., 53 (2011), 481-499.
doi: 10.1017/S0017089511000085. |

[1] |
Ryo Ikehata, Shingo Kitazaki. Optimal energy decay rates for some wave equations with double damping terms. Evolution Equations and Control Theory, 2019, 8 (4) : 825-846. doi: 10.3934/eect.2019040 |
[2] |
Moez Daoulatli. Energy decay rates for solutions of the wave equation with linear damping in exterior domain. Evolution Equations and Control Theory, 2016, 5 (1) : 37-59. doi: 10.3934/eect.2016.5.37 |
[3] |
Mohammad A. Rammaha, Daniel Toundykov, Zahava Wilstein. Global existence and decay of energy for a nonlinear wave equation with $p$-Laplacian damping. Discrete and Continuous Dynamical Systems, 2012, 32 (12) : 4361-4390. doi: 10.3934/dcds.2012.32.4361 |
[4] |
Karim El Mufti, Rania Yahia. Polynomial stability in viscoelastic network of strings. Discrete and Continuous Dynamical Systems - S, 2022, 15 (6) : 1421-1438. doi: 10.3934/dcdss.2022073 |
[5] |
Fatiha Alabau-Boussouira, Vincent Perrollaz, Lionel Rosier. Finite-time stabilization of a network of strings. Mathematical Control and Related Fields, 2015, 5 (4) : 721-742. doi: 10.3934/mcrf.2015.5.721 |
[6] |
Louis Tebou. Energy decay estimates for some weakly coupled Euler-Bernoulli and wave equations with indirect damping mechanisms. Mathematical Control and Related Fields, 2012, 2 (1) : 45-60. doi: 10.3934/mcrf.2012.2.45 |
[7] |
Zhong-Jie Han, Zhuangyi Liu, Jing Wang. Sharper and finer energy decay rate for an elastic string with localized Kelvin-Voigt damping. Discrete and Continuous Dynamical Systems - S, 2022, 15 (6) : 1455-1467. doi: 10.3934/dcdss.2022031 |
[8] |
Mohammad Akil, Ibtissam Issa, Ali Wehbe. Energy decay of some boundary coupled systems involving wave\ Euler-Bernoulli beam with one locally singular fractional Kelvin-Voigt damping. Mathematical Control and Related Fields, 2021 doi: 10.3934/mcrf.2021059 |
[9] |
András Bátkai, Istvan Z. Kiss, Eszter Sikolya, Péter L. Simon. Differential equation approximations of stochastic network processes: An operator semigroup approach. Networks and Heterogeneous Media, 2012, 7 (1) : 43-58. doi: 10.3934/nhm.2012.7.43 |
[10] |
Denis Mercier, Virginie Régnier. Decay rate of the Timoshenko system with one boundary damping. Evolution Equations and Control Theory, 2019, 8 (2) : 423-445. doi: 10.3934/eect.2019021 |
[11] |
Moez Daoulatli. Rates of decay for the wave systems with time dependent damping. Discrete and Continuous Dynamical Systems, 2011, 31 (2) : 407-443. doi: 10.3934/dcds.2011.31.407 |
[12] |
Qing Chen, Zhong Tan. Time decay of solutions to the compressible Euler equations with damping. Kinetic and Related Models, 2014, 7 (4) : 605-619. doi: 10.3934/krm.2014.7.605 |
[13] |
Vincent Giovangigli, Wen-An Yong. Volume viscosity and internal energy relaxation: Symmetrization and Chapman-Enskog expansion. Kinetic and Related Models, 2015, 8 (1) : 79-116. doi: 10.3934/krm.2015.8.79 |
[14] |
Zhong-Jie Han, Gen-Qi Xu. Spectrum and dynamical behavior of a kind of planar network of non-uniform strings with non-collocated feedbacks. Networks and Heterogeneous Media, 2010, 5 (2) : 315-334. doi: 10.3934/nhm.2010.5.315 |
[15] |
Walid Boughamda. Boundary stabilization for a star-shaped network of variable coefficients strings linked by a point mass. Discrete and Continuous Dynamical Systems - S, 2022, 15 (5) : 1103-1125. doi: 10.3934/dcdss.2021139 |
[16] |
Gustavo Alberto Perla Menzala, Julian Moises Sejje Suárez. A thermo piezoelectric model: Exponential decay of the total energy. Discrete and Continuous Dynamical Systems, 2013, 33 (11&12) : 5273-5292. doi: 10.3934/dcds.2013.33.5273 |
[17] |
Mohammed Aassila. On energy decay rate for linear damped systems. Discrete and Continuous Dynamical Systems, 2002, 8 (4) : 851-864. doi: 10.3934/dcds.2002.8.851 |
[18] |
Bopeng Rao. Optimal energy decay rate in a damped Rayleigh beam. Discrete and Continuous Dynamical Systems, 1998, 4 (4) : 721-734. doi: 10.3934/dcds.1998.4.721 |
[19] |
Kazuhiro Ishige, Yujiro Tateishi. Decay estimates for Schrödinger heat semigroup with inverse square potential in Lorentz spaces II. Discrete and Continuous Dynamical Systems, 2022, 42 (1) : 369-401. doi: 10.3934/dcds.2021121 |
[20] |
Kim Dang Phung. Decay of solutions of the wave equation with localized nonlinear damping and trapped rays. Mathematical Control and Related Fields, 2011, 1 (2) : 251-265. doi: 10.3934/mcrf.2011.1.251 |
2020 Impact Factor: 1.081
Tools
Metrics
Other articles
by authors
[Back to Top]