September  2018, 7(3): 353-371. doi: 10.3934/eect.2018018

Rate of convergence of inertial gradient dynamics with time-dependent viscous damping coefficient

1. 

IMAG, Univ. Montpellier, CNRS, Montpellier, France

2. 

Institut de Mathématiques de Bourgogne, UMR 5584, Université Bourgogne Franche-Comté, 21000 Dijon, France

3. 

Faculty of Sciences Semlalia, Mathematics, Cadi Ayyad university, 40000 Marrakech, Morroco

* Corresponding author

Received  December 2017 Revised  April 2018 Published  July 2018

In a Hilbert space
$\mathcal H$
, we study the convergence properties when
$t→+∞$
of the trajectories of the second-order differential equation
$\begin{equation*}\ddot{x}(t) + γ(t) \dot{x}(t) + \nabla Φ (x(t)) = 0, \;\;\;\;\;\;\;\;{{\rm (IGS)}_{γ}}\end{equation*}$
where
$\nablaΦ$
is the gradient of a convex continuously differentiable function
$Φ: \mathcal H→\mathbb R$
, and
$γ(t)$
is a time-dependent positive viscous damping coefficient. This study aims to offer a unifying vision on the subject, and to complement the article by Attouch and Cabot (J. Diff. Equations, 2017). We obtain convergence rates for the values
$Φ(x(t))-{\rm{inf}}_\mathcal{H} Φ$
and the velocities under general conditions involving only
$γ(·)$
and its derivatives. In particular, in the case
$γ(t) = \frac{α}{t}$
, which is directly connected to the Nesterov accelerated gradient method, our approach allows us to cover all the positive values of
$α$
, including the subcritical case
$α<3$
. Our approach is based on the introduction of a new class of Lyapunov functions.
Citation: Hedy Attouch, Alexandre Cabot, Zaki Chbani, Hassan Riahi. Rate of convergence of inertial gradient dynamics with time-dependent viscous damping coefficient. Evolution Equations & Control Theory, 2018, 7 (3) : 353-371. doi: 10.3934/eect.2018018
References:
[1]

V. ApidopoulosJ.-F. Aujol and Ch. Dossal, The differential inclusion modeling FISTA algorithm and optimality of convergence rate in the case $b \le 3$, SIAM J. Optim., 28 (2018), 551-574.  doi: 10.1137/17M1128642.  Google Scholar

[2]

H. Attouch and A. Cabot, Asymptotic stabilization of inertial gradient dynamics with time-dependent viscosity, J. Differential Equations, 263 (2017), 5412-5458.  doi: 10.1016/j.jde.2017.06.024.  Google Scholar

[3]

H. AttouchA. Cabot and P. Redont, The dynamics of elastic shocks via epigraphical regularization of a differential inclusion, Adv. Math. Sci. Appl., 12 (2002), 273-306.   Google Scholar

[4]

H. AttouchZ. ChbaniJ. Peypouquet and P. Redont, Fast convergence of inertial dynamics and algorithms with asymptotic vanishing damping, Math. Program. Ser. B, 168 (2018), 123-175.  doi: 10.1007/s10107-016-0992-8.  Google Scholar

[5]

H. Attouch, Z. Chbani and H. Riahi, Rate of convergence of the Nesterov accelerated gradient method in the subcritical case $\alpha \le 3$, arXiv: 1706.05671v1, [math. OC], accepted in $COCV$. doi: 10.1051/cocv/2017083.  Google Scholar

[6]

H. Attouch and J. Peypouquet, The rate of convergence of Nesterov's accelerated forward-backward method is actually faster than $\frac{1}{k^2}$, SIAM J. Optim., 26 (2016), 1824-1834.  doi: 10.1137/15M1046095.  Google Scholar

[7]

J.-F. Aujol and Ch. Dossal, Stability of over-relaxations for the Forward-Backward algorithm, application to FISTA, SIAM J. Optim., 25 (2015), 2408-2433.  doi: 10.1137/140994964.  Google Scholar

[8]

J.-F. Aujol and Ch. Dossal, Optimal rate of convergence of an ODE associated to the Fast Gradient Descent schemes for $b>0$, HAL Preprint 01547251, 2017. Google Scholar

[9]

M. Balti and R. May, Asymptotic for the perturbed heavy ball system with vanishing damping term, Evolution Equations and Control Theory, 6 (2017), 177-186.  doi: 10.3934/eect.2017010.  Google Scholar

[10]

A. Beck and M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM J. Imaging Sci., 2 (2009), 183-202.  doi: 10.1137/080716542.  Google Scholar

[11]

R. I. Bot and E. R. Csetnek, Second order forward-backward dynamical systems for monotone inclusion problems, SIAM J. Control Optim., 54 (2016), 1423-1443.  doi: 10.1137/15M1012657.  Google Scholar

[12]

A. CabotH. Engler and S. Gadat, On the long time behavior of second order differential equations with asymptotically small dissipation, Transactions of the American Mathematical Society, 361 (2009), 5983-6017.  doi: 10.1090/S0002-9947-09-04785-0.  Google Scholar

[13]

A. CabotH. Engler and S. Gadat, Second order differential equations with asymptotically small dissipation and piecewise flat potentials, Electronic Journal of Differential Equations, 17 (2009), 33-38.   Google Scholar

[14]

A. Cabot and P. Frankel, Asymptotics for some semilinear hyperbolic equations with non-autonomous damping, Journal of Differential Equations, 252 (2012), 294-322.  doi: 10.1016/j.jde.2011.09.012.  Google Scholar

[15]

A. Chambolle and Ch. Dossal, On the convergence of the iterates of the "Fast Iterative Shrinkage/Thresholding Algorithm", Journal of Optimization Theory and Applications, 166 (2015), 968-982.  doi: 10.1007/s10957-015-0746-4.  Google Scholar

[16]

Y. Drori and M. Teboulle, Performance of first-order methods for smooth convex minimization: A novel approach, Mathematical Programming, Series A, 145 (2014), 451-482.  doi: 10.1007/s10107-013-0653-0.  Google Scholar

[17]

M. GhisiM. Gobbino and A. Haraux, The remarkable effectiveness of time-dependent damping terms for second order evolution equations, SIAM J. Control Optim., 54 (2016), 1266-1294.  doi: 10.1137/15M1029485.  Google Scholar

[18]

A. Haraux, Systèmes Dynamiques Dissipatifs et Applications, Masson, Paris, 1991.  Google Scholar

[19]

A. Haraux and M. A. Jendoubi, Asymptotics for a second order differential equation with a linear, slowly time-decaying damping term, Evolution Equations and Control Theory, 2 (2013), 461-470.  doi: 10.3934/eect.2013.2.461.  Google Scholar

[20]

M. A. Jendoubi and R. May, Asymptotics for a second-order differential equation with nonautonomous damping and an integrable source term, Applicable Analysis, 94 (2015), 436-444.  doi: 10.1080/00036811.2014.903569.  Google Scholar

[21]

R. May, Asymptotic for a second order evolution equation with convex potential and vanishing damping term, Turk. J. Math., 41 (2017), 681-685.  doi: 10.3906/mat-1512-28.  Google Scholar

[22]

Y. Nesterov, A method of solving a convex programming problem with convergence rate $O(1/k^2)$, Soviet Mathematics Doklady, 27 (1983), 372-376.   Google Scholar

[23]

Y. Nesterov, Introductory Lectures on Convex Optimization: A Basic Course, volume 87 of Applied Optimization. Kluwer Academic Publishers, Boston, MA, 2004. doi: 10.1007/978-1-4419-8853-9.  Google Scholar

[24]

M. Schmidt, N. Le Roux and F. Bach, Convergence rates of inexact proximal-gradient methods for convex optimization, NIPS'11 - 25 th Annual Conference on Neural Information Processing Systems, Dec 2011, Grenada, Spain. (2011) HAL inria-00618152v3. Google Scholar

[25]

M. V. Solodov and B. F. Svaiter, A unified framework for some inexact proximal point algorithms, Numer. Funct. Anal. Optim., 22 (2001), 1013-1035.  doi: 10.1081/NFA-100108320.  Google Scholar

[26]

W. SuS. Boyd and E. J. Candès, A differential equation for modeling Nesterov's accelerated gradient method: Theory and insights, Journal of Machine Learning Research, 17 (2016), 1-43.   Google Scholar

[27]

S. VillaS. SalzoL. Baldassarres and A. Verri, Accelerated and inexact forward-backward, SIAM J. Optim., 23 (2013), 1607-1633.  doi: 10.1137/110844805.  Google Scholar

show all references

References:
[1]

V. ApidopoulosJ.-F. Aujol and Ch. Dossal, The differential inclusion modeling FISTA algorithm and optimality of convergence rate in the case $b \le 3$, SIAM J. Optim., 28 (2018), 551-574.  doi: 10.1137/17M1128642.  Google Scholar

[2]

H. Attouch and A. Cabot, Asymptotic stabilization of inertial gradient dynamics with time-dependent viscosity, J. Differential Equations, 263 (2017), 5412-5458.  doi: 10.1016/j.jde.2017.06.024.  Google Scholar

[3]

H. AttouchA. Cabot and P. Redont, The dynamics of elastic shocks via epigraphical regularization of a differential inclusion, Adv. Math. Sci. Appl., 12 (2002), 273-306.   Google Scholar

[4]

H. AttouchZ. ChbaniJ. Peypouquet and P. Redont, Fast convergence of inertial dynamics and algorithms with asymptotic vanishing damping, Math. Program. Ser. B, 168 (2018), 123-175.  doi: 10.1007/s10107-016-0992-8.  Google Scholar

[5]

H. Attouch, Z. Chbani and H. Riahi, Rate of convergence of the Nesterov accelerated gradient method in the subcritical case $\alpha \le 3$, arXiv: 1706.05671v1, [math. OC], accepted in $COCV$. doi: 10.1051/cocv/2017083.  Google Scholar

[6]

H. Attouch and J. Peypouquet, The rate of convergence of Nesterov's accelerated forward-backward method is actually faster than $\frac{1}{k^2}$, SIAM J. Optim., 26 (2016), 1824-1834.  doi: 10.1137/15M1046095.  Google Scholar

[8]

J.-F. Aujol and Ch. Dossal, Optimal rate of convergence of an ODE associated to the Fast Gradient Descent schemes for $b>0$, HAL Preprint 01547251, 2017. Google Scholar

[9]

M. Balti and R. May, Asymptotic for the perturbed heavy ball system with vanishing damping term, Evolution Equations and Control Theory, 6 (2017), 177-186.  doi: 10.3934/eect.2017010.  Google Scholar

[10]

A. Beck and M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM J. Imaging Sci., 2 (2009), 183-202.  doi: 10.1137/080716542.  Google Scholar

[11]

R. I. Bot and E. R. Csetnek, Second order forward-backward dynamical systems for monotone inclusion problems, SIAM J. Control Optim., 54 (2016), 1423-1443.  doi: 10.1137/15M1012657.  Google Scholar

[12]

A. CabotH. Engler and S. Gadat, On the long time behavior of second order differential equations with asymptotically small dissipation, Transactions of the American Mathematical Society, 361 (2009), 5983-6017.  doi: 10.1090/S0002-9947-09-04785-0.  Google Scholar

[13]

A. CabotH. Engler and S. Gadat, Second order differential equations with asymptotically small dissipation and piecewise flat potentials, Electronic Journal of Differential Equations, 17 (2009), 33-38.   Google Scholar

[14]

A. Cabot and P. Frankel, Asymptotics for some semilinear hyperbolic equations with non-autonomous damping, Journal of Differential Equations, 252 (2012), 294-322.  doi: 10.1016/j.jde.2011.09.012.  Google Scholar

[15]

A. Chambolle and Ch. Dossal, On the convergence of the iterates of the "Fast Iterative Shrinkage/Thresholding Algorithm", Journal of Optimization Theory and Applications, 166 (2015), 968-982.  doi: 10.1007/s10957-015-0746-4.  Google Scholar

[16]

Y. Drori and M. Teboulle, Performance of first-order methods for smooth convex minimization: A novel approach, Mathematical Programming, Series A, 145 (2014), 451-482.  doi: 10.1007/s10107-013-0653-0.  Google Scholar

[17]

M. GhisiM. Gobbino and A. Haraux, The remarkable effectiveness of time-dependent damping terms for second order evolution equations, SIAM J. Control Optim., 54 (2016), 1266-1294.  doi: 10.1137/15M1029485.  Google Scholar

[18]

A. Haraux, Systèmes Dynamiques Dissipatifs et Applications, Masson, Paris, 1991.  Google Scholar

[19]

A. Haraux and M. A. Jendoubi, Asymptotics for a second order differential equation with a linear, slowly time-decaying damping term, Evolution Equations and Control Theory, 2 (2013), 461-470.  doi: 10.3934/eect.2013.2.461.  Google Scholar

[20]

M. A. Jendoubi and R. May, Asymptotics for a second-order differential equation with nonautonomous damping and an integrable source term, Applicable Analysis, 94 (2015), 436-444.  doi: 10.1080/00036811.2014.903569.  Google Scholar

[21]

R. May, Asymptotic for a second order evolution equation with convex potential and vanishing damping term, Turk. J. Math., 41 (2017), 681-685.  doi: 10.3906/mat-1512-28.  Google Scholar

[22]

Y. Nesterov, A method of solving a convex programming problem with convergence rate $O(1/k^2)$, Soviet Mathematics Doklady, 27 (1983), 372-376.   Google Scholar

[23]

Y. Nesterov, Introductory Lectures on Convex Optimization: A Basic Course, volume 87 of Applied Optimization. Kluwer Academic Publishers, Boston, MA, 2004. doi: 10.1007/978-1-4419-8853-9.  Google Scholar

[24]

M. Schmidt, N. Le Roux and F. Bach, Convergence rates of inexact proximal-gradient methods for convex optimization, NIPS'11 - 25 th Annual Conference on Neural Information Processing Systems, Dec 2011, Grenada, Spain. (2011) HAL inria-00618152v3. Google Scholar

[25]

M. V. Solodov and B. F. Svaiter, A unified framework for some inexact proximal point algorithms, Numer. Funct. Anal. Optim., 22 (2001), 1013-1035.  doi: 10.1081/NFA-100108320.  Google Scholar

[26]

W. SuS. Boyd and E. J. Candès, A differential equation for modeling Nesterov's accelerated gradient method: Theory and insights, Journal of Machine Learning Research, 17 (2016), 1-43.   Google Scholar

[27]

S. VillaS. SalzoL. Baldassarres and A. Verri, Accelerated and inexact forward-backward, SIAM J. Optim., 23 (2013), 1607-1633.  doi: 10.1137/110844805.  Google Scholar

[1]

Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115

[2]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020076

[3]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[4]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[5]

Mohammed Abdulrazaq Kahya, Suhaib Abduljabbar Altamir, Zakariya Yahya Algamal. Improving whale optimization algorithm for feature selection with a time-varying transfer function. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 87-98. doi: 10.3934/naco.2020017

[6]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[7]

Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020341

[8]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[9]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

[10]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[11]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[12]

Vivina Barutello, Gian Marco Canneori, Susanna Terracini. Minimal collision arcs asymptotic to central configurations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 61-86. doi: 10.3934/dcds.2020218

[13]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031

[14]

Mehdi Bastani, Davod Khojasteh Salkuyeh. On the GSOR iteration method for image restoration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 27-43. doi: 10.3934/naco.2020013

[15]

Qianqian Han, Xiao-Song Yang. Qualitative analysis of a generalized Nosé-Hoover oscillator. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020346

[16]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[17]

Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Applications of mathematical analysis to problems in theoretical physics. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020446

[18]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[19]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[20]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

2019 Impact Factor: 0.953

Metrics

  • PDF downloads (197)
  • HTML views (286)
  • Cited by (4)

[Back to Top]