\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Rate of convergence of inertial gradient dynamics with time-dependent viscous damping coefficient

  • * Corresponding author

    * Corresponding author 
Abstract / Introduction Full Text(HTML) Related Papers Cited by
  • In a Hilbert space $\mathcal H$ , we study the convergence properties when $t→+∞$ of the trajectories of the second-order differential equation

    $\begin{equation*}\ddot{x}(t) + γ(t) \dot{x}(t) + \nabla Φ (x(t)) = 0, \;\;\;\;\;\;\;\;{{\rm (IGS)}_{γ}}\end{equation*}$

    where $\nablaΦ$ is the gradient of a convex continuously differentiable function $Φ: \mathcal H→\mathbb R$ , and $γ(t)$ is a time-dependent positive viscous damping coefficient. This study aims to offer a unifying vision on the subject, and to complement the article by Attouch and Cabot (J. Diff. Equations, 2017). We obtain convergence rates for the values $Φ(x(t))-{\rm{inf}}_\mathcal{H} Φ$ and the velocities under general conditions involving only $γ(·)$ and its derivatives. In particular, in the case $γ(t) = \frac{α}{t}$ , which is directly connected to the Nesterov accelerated gradient method, our approach allows us to cover all the positive values of $α$ , including the subcritical case $α<3$ . Our approach is based on the introduction of a new class of Lyapunov functions.

    Mathematics Subject Classification: 37N40, 49M30, 65K05, 65K10, 90C25.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] V. ApidopoulosJ.-F. Aujol and Ch. Dossal, The differential inclusion modeling FISTA algorithm and optimality of convergence rate in the case $b \le 3$, SIAM J. Optim., 28 (2018), 551-574.  doi: 10.1137/17M1128642.
    [2] H. Attouch and A. Cabot, Asymptotic stabilization of inertial gradient dynamics with time-dependent viscosity, J. Differential Equations, 263 (2017), 5412-5458.  doi: 10.1016/j.jde.2017.06.024.
    [3] H. AttouchA. Cabot and P. Redont, The dynamics of elastic shocks via epigraphical regularization of a differential inclusion, Adv. Math. Sci. Appl., 12 (2002), 273-306. 
    [4] H. AttouchZ. ChbaniJ. Peypouquet and P. Redont, Fast convergence of inertial dynamics and algorithms with asymptotic vanishing damping, Math. Program. Ser. B, 168 (2018), 123-175.  doi: 10.1007/s10107-016-0992-8.
    [5] H. Attouch, Z. Chbani and H. Riahi, Rate of convergence of the Nesterov accelerated gradient method in the subcritical case $\alpha \le 3$, arXiv: 1706.05671v1, [math. OC], accepted in $COCV$. doi: 10.1051/cocv/2017083.
    [6] H. Attouch and J. Peypouquet, The rate of convergence of Nesterov's accelerated forward-backward method is actually faster than $\frac{1}{k^2}$, SIAM J. Optim., 26 (2016), 1824-1834.  doi: 10.1137/15M1046095.
    [7] J.-F. Aujol and Ch. Dossal, Stability of over-relaxations for the Forward-Backward algorithm, application to FISTA, SIAM J. Optim., 25 (2015), 2408-2433.  doi: 10.1137/140994964.
    [8] J.-F. Aujol and Ch. Dossal, Optimal rate of convergence of an ODE associated to the Fast Gradient Descent schemes for $b>0$, HAL Preprint 01547251, 2017.
    [9] M. Balti and R. May, Asymptotic for the perturbed heavy ball system with vanishing damping term, Evolution Equations and Control Theory, 6 (2017), 177-186.  doi: 10.3934/eect.2017010.
    [10] A. Beck and M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM J. Imaging Sci., 2 (2009), 183-202.  doi: 10.1137/080716542.
    [11] R. I. Bot and E. R. Csetnek, Second order forward-backward dynamical systems for monotone inclusion problems, SIAM J. Control Optim., 54 (2016), 1423-1443.  doi: 10.1137/15M1012657.
    [12] A. CabotH. Engler and S. Gadat, On the long time behavior of second order differential equations with asymptotically small dissipation, Transactions of the American Mathematical Society, 361 (2009), 5983-6017.  doi: 10.1090/S0002-9947-09-04785-0.
    [13] A. CabotH. Engler and S. Gadat, Second order differential equations with asymptotically small dissipation and piecewise flat potentials, Electronic Journal of Differential Equations, 17 (2009), 33-38. 
    [14] A. Cabot and P. Frankel, Asymptotics for some semilinear hyperbolic equations with non-autonomous damping, Journal of Differential Equations, 252 (2012), 294-322.  doi: 10.1016/j.jde.2011.09.012.
    [15] A. Chambolle and Ch. Dossal, On the convergence of the iterates of the "Fast Iterative Shrinkage/Thresholding Algorithm", Journal of Optimization Theory and Applications, 166 (2015), 968-982.  doi: 10.1007/s10957-015-0746-4.
    [16] Y. Drori and M. Teboulle, Performance of first-order methods for smooth convex minimization: A novel approach, Mathematical Programming, Series A, 145 (2014), 451-482.  doi: 10.1007/s10107-013-0653-0.
    [17] M. GhisiM. Gobbino and A. Haraux, The remarkable effectiveness of time-dependent damping terms for second order evolution equations, SIAM J. Control Optim., 54 (2016), 1266-1294.  doi: 10.1137/15M1029485.
    [18] A. Haraux, Systèmes Dynamiques Dissipatifs et Applications, Masson, Paris, 1991.
    [19] A. Haraux and M. A. Jendoubi, Asymptotics for a second order differential equation with a linear, slowly time-decaying damping term, Evolution Equations and Control Theory, 2 (2013), 461-470.  doi: 10.3934/eect.2013.2.461.
    [20] M. A. Jendoubi and R. May, Asymptotics for a second-order differential equation with nonautonomous damping and an integrable source term, Applicable Analysis, 94 (2015), 436-444.  doi: 10.1080/00036811.2014.903569.
    [21] R. May, Asymptotic for a second order evolution equation with convex potential and vanishing damping term, Turk. J. Math., 41 (2017), 681-685.  doi: 10.3906/mat-1512-28.
    [22] Y. Nesterov, A method of solving a convex programming problem with convergence rate $O(1/k^2)$, Soviet Mathematics Doklady, 27 (1983), 372-376. 
    [23] Y. Nesterov, Introductory Lectures on Convex Optimization: A Basic Course, volume 87 of Applied Optimization. Kluwer Academic Publishers, Boston, MA, 2004. doi: 10.1007/978-1-4419-8853-9.
    [24] M. Schmidt, N. Le Roux and F. Bach, Convergence rates of inexact proximal-gradient methods for convex optimization, NIPS'11 - 25 th Annual Conference on Neural Information Processing Systems, Dec 2011, Grenada, Spain. (2011) HAL inria-00618152v3.
    [25] M. V. Solodov and B. F. Svaiter, A unified framework for some inexact proximal point algorithms, Numer. Funct. Anal. Optim., 22 (2001), 1013-1035.  doi: 10.1081/NFA-100108320.
    [26] W. SuS. Boyd and E. J. Candès, A differential equation for modeling Nesterov's accelerated gradient method: Theory and insights, Journal of Machine Learning Research, 17 (2016), 1-43. 
    [27] S. VillaS. SalzoL. Baldassarres and A. Verri, Accelerated and inexact forward-backward, SIAM J. Optim., 23 (2013), 1607-1633.  doi: 10.1137/110844805.
  • 加载中
SHARE

Article Metrics

HTML views(2063) PDF downloads(410) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return