September  2018, 7(3): 403-415. doi: 10.3934/eect.2018020

Exact boundary controllability for the Boussinesq equation with variable coefficients

Department of Mathematics, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunisia, Mathematical Engineering Laboratory, (LR01ES13), Tunisia Polytechnic School, Tunisia

Received  October 2017 Revised  April 2018 Published  July 2018

In this paper we study the exact boundary controllability for the following Boussinesq equation with variable physical parameters:
$\left\{ \begin{align} & \rho (x){{y}_{tt}}=-{{(\sigma (x){{y}_{xx}})}_{xx}}+{{(q(x){{y}_{x}})}_{x}}-{{({{y}^{2}})}_{xx}},\ \ \ \ \ \ \ t>0,~x\in (0,l), \\ & y(t,0)={{y}_{xx}}(t,0)=y(t,l)=0,~~\sigma (l){{y}_{xx}}(t,l)=u(t)\ \ \ \ \ t>0, \\ \end{align} \right.$
where
$l>0$
, the coefficients
$ρ(x)>0, \sigma (x)>0 $
,
$q(x)≥0$
in
$\left[ {0,l} \right]$
and
$u$
is the control acting at the end
$x=l$
. We prove that the linearized problem is exactly controllable in any time
$T>0$
. Our approach is essentially based on a detailed spectral analysis together with the moment method. Furthermore, we establish the local exact controllability for the nonlinear problem by fixed point argument. This problem has been studied by Crépeau [Diff. Integ. Equat., 2002] in the case of constant coefficients
$ρ\equiv\sigma \equiv q\equiv1$
.
Citation: Jamel Ben Amara, Hedi Bouzidi. Exact boundary controllability for the Boussinesq equation with variable coefficients. Evolution Equations & Control Theory, 2018, 7 (3) : 403-415. doi: 10.3934/eect.2018020
References:
[1]

D. Banks and G. Kurowski, A Prüfer transformation for the equation of a vibrating beam, Trans. Amer. Math. Soc., 199 (1974), 203-222.  doi: 10.2307/1996883.  Google Scholar

[2]

D. Banks and G. Kurowski, A Prüfer transformation for the equation of a vibrating beam subject to axial forces, Journal of Diff. Equat., 24 (1977), 57-74.  doi: 10.1016/0022-0396(77)90170-X.  Google Scholar

[3]

J. Ben Amara and A. A. Vladimirov, On a fourth-order problem with spectral and physical parameters in the boundary condition, Izvestiya: Mathematics, 68 (2004), 645-658.  doi: 10.1070/IM2004v068n04ABEH000494.  Google Scholar

[4]

J. L. Bona and R. L. Sachs, Global existence of smooth solutions and stability of solitary waves for a generalized Boussinesq equation, Commun. Math. Phys., 118 (1988), 15-29.  doi: 10.1007/BF01218475.  Google Scholar

[5]

J. V. Boussinesq, Théorie des ondes et des remous qui se propagent le long d'un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond, J. Math. Pures Appl., 17 (1872), 55-108.   Google Scholar

[6]

E. Cerpa and E. Crépeau, Global existence of smooth solutions and stability of solitary waves for a generalized Boussinesq equation, preprint. Google Scholar

[7]

J. M. Coron, Control and Nonlinearity, vol. 136 of Mathematical Surveys and Monographs, American Mathematical Soc., Providence, RI, 2007.  Google Scholar

[8]

E. Crépeau, Exact controllability of the Boussinesq equation on a bounded domain, Diff. Integ. Equat., 16 (2002), 303-326.   Google Scholar

[9]

P. DeiftC. Tomei and E. Trubowitz, Inverse scattering and the Boussinesq equation, Comm. Pure Appl. Math., 35 (1982), 567-628.  doi: 10.1002/cpa.3160350502.  Google Scholar

[10]

M. V. Fedoryuk, Asymptotic Analysis, Springer-Verlag, 1983. doi: 10. 1007/978-3-642-58016-1.  Google Scholar

[11]

A. Haraux, Séries lacunaires et contrôle semi-interne des vibrations d'une plaque rectangulaire, J. Math. Pures et Appl., 68 (1989), 457-465.   Google Scholar

[12]

A. A. Himonas and D. Mantzavinos, The "good" Boussinesq equation on the half-line, Journal of Diff. Equat., 258 (2015), 3107-3160.  doi: 10.1016/j.jde.2015.01.005.  Google Scholar

[13]

N. Kishimoto, Sharp local well-posedness for the "good" Boussinesq equation, Journal of Diff. Equat., 254 (2013), 2393-2433.  doi: 10.1016/j.jde.2012.12.008.  Google Scholar

[14]

V. Komornik, Exact Controllability and Stabilization, the Multiplier Method, John Wiley-Masson, 1994.  Google Scholar

[15]

W. Leighton and Z. Nehari, On the oscillation of solutions of self-adjoint linear differential equations of fourth-order, Trans. Amer. Math. Soc., 89 (1958), 325-377.  doi: 10.1090/S0002-9947-1958-0102639-X.  Google Scholar

[16]

B. M. Levitan and I. S. Sargsyan, Introduction to Spectral Theory, AMS, 1975.  Google Scholar

[17]

F. Linares, Global existence of small solutions for a generalized Boussinesq equation, Journal of Diff. Equat., 106 (1993), 257-293.  doi: 10.1006/jdeq.1993.1108.  Google Scholar

[18]

J. L. Lions, Exact controllability, stabilization and perturbation for distributed systems, SIAM Rev., 30 (1988), 1-68.  doi: 10.1137/1030001.  Google Scholar

[19]

J. L. Lions, Contrôlabilité Exacte, Perturbations et Stabilisation de Systémes Distribués, Tome 1 and 2, Masson, RMA, Paris, 1988.  Google Scholar

[20]

J. L. Lions and E. Magenes, Non–Homogeneous Boundary Value Problems and Applications, Springer, Berlin, 1972.  Google Scholar

[21]

M. A. Naimark, Linear Differential Operators, Ungar, New York, 167. Google Scholar

[22]

L. Rosier, Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain, ESAIM: COCV, 2 (1997), 33-55.  doi: 10.1051/cocv:1997102.  Google Scholar

[23]

S. K. Turitsyn, Nonstable solitons and sharp criteria for wave collapse, Phys. Rev. E, 47 (1993), R13-R16.  doi: 10.1103/PhysRevE.47.R13.  Google Scholar

[24]

V. E. Zakharov, On stochastization of one-dimensional chains of nonlinear oscillators, Sov. Phys. JETP., 38 (1974), 108-110.   Google Scholar

[25]

B. Y. Zhang, Exact controllability of the generalized Boussinesq equation, in Control and Estimation of Distributed Parameter Systems, 126 (1988), 297–310.  Google Scholar

show all references

References:
[1]

D. Banks and G. Kurowski, A Prüfer transformation for the equation of a vibrating beam, Trans. Amer. Math. Soc., 199 (1974), 203-222.  doi: 10.2307/1996883.  Google Scholar

[2]

D. Banks and G. Kurowski, A Prüfer transformation for the equation of a vibrating beam subject to axial forces, Journal of Diff. Equat., 24 (1977), 57-74.  doi: 10.1016/0022-0396(77)90170-X.  Google Scholar

[3]

J. Ben Amara and A. A. Vladimirov, On a fourth-order problem with spectral and physical parameters in the boundary condition, Izvestiya: Mathematics, 68 (2004), 645-658.  doi: 10.1070/IM2004v068n04ABEH000494.  Google Scholar

[4]

J. L. Bona and R. L. Sachs, Global existence of smooth solutions and stability of solitary waves for a generalized Boussinesq equation, Commun. Math. Phys., 118 (1988), 15-29.  doi: 10.1007/BF01218475.  Google Scholar

[5]

J. V. Boussinesq, Théorie des ondes et des remous qui se propagent le long d'un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond, J. Math. Pures Appl., 17 (1872), 55-108.   Google Scholar

[6]

E. Cerpa and E. Crépeau, Global existence of smooth solutions and stability of solitary waves for a generalized Boussinesq equation, preprint. Google Scholar

[7]

J. M. Coron, Control and Nonlinearity, vol. 136 of Mathematical Surveys and Monographs, American Mathematical Soc., Providence, RI, 2007.  Google Scholar

[8]

E. Crépeau, Exact controllability of the Boussinesq equation on a bounded domain, Diff. Integ. Equat., 16 (2002), 303-326.   Google Scholar

[9]

P. DeiftC. Tomei and E. Trubowitz, Inverse scattering and the Boussinesq equation, Comm. Pure Appl. Math., 35 (1982), 567-628.  doi: 10.1002/cpa.3160350502.  Google Scholar

[10]

M. V. Fedoryuk, Asymptotic Analysis, Springer-Verlag, 1983. doi: 10. 1007/978-3-642-58016-1.  Google Scholar

[11]

A. Haraux, Séries lacunaires et contrôle semi-interne des vibrations d'une plaque rectangulaire, J. Math. Pures et Appl., 68 (1989), 457-465.   Google Scholar

[12]

A. A. Himonas and D. Mantzavinos, The "good" Boussinesq equation on the half-line, Journal of Diff. Equat., 258 (2015), 3107-3160.  doi: 10.1016/j.jde.2015.01.005.  Google Scholar

[13]

N. Kishimoto, Sharp local well-posedness for the "good" Boussinesq equation, Journal of Diff. Equat., 254 (2013), 2393-2433.  doi: 10.1016/j.jde.2012.12.008.  Google Scholar

[14]

V. Komornik, Exact Controllability and Stabilization, the Multiplier Method, John Wiley-Masson, 1994.  Google Scholar

[15]

W. Leighton and Z. Nehari, On the oscillation of solutions of self-adjoint linear differential equations of fourth-order, Trans. Amer. Math. Soc., 89 (1958), 325-377.  doi: 10.1090/S0002-9947-1958-0102639-X.  Google Scholar

[16]

B. M. Levitan and I. S. Sargsyan, Introduction to Spectral Theory, AMS, 1975.  Google Scholar

[17]

F. Linares, Global existence of small solutions for a generalized Boussinesq equation, Journal of Diff. Equat., 106 (1993), 257-293.  doi: 10.1006/jdeq.1993.1108.  Google Scholar

[18]

J. L. Lions, Exact controllability, stabilization and perturbation for distributed systems, SIAM Rev., 30 (1988), 1-68.  doi: 10.1137/1030001.  Google Scholar

[19]

J. L. Lions, Contrôlabilité Exacte, Perturbations et Stabilisation de Systémes Distribués, Tome 1 and 2, Masson, RMA, Paris, 1988.  Google Scholar

[20]

J. L. Lions and E. Magenes, Non–Homogeneous Boundary Value Problems and Applications, Springer, Berlin, 1972.  Google Scholar

[21]

M. A. Naimark, Linear Differential Operators, Ungar, New York, 167. Google Scholar

[22]

L. Rosier, Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain, ESAIM: COCV, 2 (1997), 33-55.  doi: 10.1051/cocv:1997102.  Google Scholar

[23]

S. K. Turitsyn, Nonstable solitons and sharp criteria for wave collapse, Phys. Rev. E, 47 (1993), R13-R16.  doi: 10.1103/PhysRevE.47.R13.  Google Scholar

[24]

V. E. Zakharov, On stochastization of one-dimensional chains of nonlinear oscillators, Sov. Phys. JETP., 38 (1974), 108-110.   Google Scholar

[25]

B. Y. Zhang, Exact controllability of the generalized Boussinesq equation, in Control and Estimation of Distributed Parameter Systems, 126 (1988), 297–310.  Google Scholar

[1]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[2]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[3]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[4]

Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020

[5]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[6]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[7]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[8]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020267

[9]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[10]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020052

[11]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[12]

Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020347

[13]

M. S. Lee, H. G. Harno, B. S. Goh, K. H. Lim. On the bang-bang control approach via a component-wise line search strategy for unconstrained optimization. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 45-61. doi: 10.3934/naco.2020014

[14]

Xuefeng Zhang, Yingbo Zhang. Fault-tolerant control against actuator failures for uncertain singular fractional order systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 1-12. doi: 10.3934/naco.2020011

[15]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[16]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[17]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[18]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[19]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[20]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

2019 Impact Factor: 0.953

Metrics

  • PDF downloads (178)
  • HTML views (263)
  • Cited by (0)

Other articles
by authors

[Back to Top]