-
Previous Article
Null controllability of the incompressible Stokes equations in a 2-D channel using normal boundary control
- EECT Home
- This Issue
-
Next Article
Exact boundary controllability for the Boussinesq equation with variable coefficients
Control problems and invariant subspaces for sabra shell model of turbulence
School of Mathematics, IISER Thiruvananthapuram, Maruthamala PO, Vithura, Thiruvananthapuram, Kerala, 695 551, India |
Shell models of turbulence are representation of turbulence equations in Fourier domain. Various shell models and their existence theory along with numerical simulations have been studied earlier. One of the most suitable shell model of turbulence is so called sabra shell model. The existence, uniqueness and regularity property of this model are extensively studied in [
References:
[1] |
F. Abergel and R. Temam,
On some control problems in fluid mechanics, Theoretical and Computational Fluid Dynamics, 1 (1990), 303-325.
doi: 10.1007/BF00271794. |
[2] |
V. Barbu,
Stabilization of Navier Stokes Flows, Stabilization of Navier-Stokes Flows, Springer London, 2011.
doi: 10.1007/978-0-85729-043-4. |
[3] |
V. Barbu,
Nonlinear Semigroups and Differential Equations in Banach Spaces, Bucharest-Noordhoff, Leyden: Editura Academiei, 1976. |
[4] |
V. Barbu and S. S. Sritharan,
Flow invariance preserving feedback controllers for the Navier-Stokes equation, Journal of Mathematical Analysis and Applications, 255 (2001), 281-307.
doi: 10.1006/jmaa.2000.7256. |
[5] |
V. Barbu,
Nonlinear Differential Equations of Monotone Types in Banach Spaces, Springer Science and Business Media, 2010.
doi: 10.1007/978-1-4419-5542-5. |
[6] |
T. Bohr, M. H. Jensen, G. Paladin and A. Vulpiani,
Dynamical Systems Approach to Turbulence, Cambridge University Press, 1998.
doi: 10.1017/CBO9780511599972. |
[7] |
H. Brezis,
Operateurs Maximaux Monotones et Semi-groupes de Contractions Dans Les Espaces de Hilbert, American Elsevier Publishing Co., Inc., New York, 1973. |
[8] |
L. Chong and X.-Q. Jin,
Nonlinearly constrained best approximation in Hilbert spaces: The strong CHIP and the basic constraint qualification, SIAM Journal on Optimization, 13 (2002), 228-239.
doi: 10.1137/S1052623401385600. |
[9] |
C. K. Chui, F. Deutsch and J. D. Ward,
Constrained best approximation in Hilbert space, Constructive Approximation, 6 (1990), 35-64.
doi: 10.1007/BF01891408. |
[10] |
C. K. Chui, F. Deutsch and J. D. Ward,
Constrained best approximation in Hilbert space, Ⅱ, Journal of Approximation Theory, 71 (1992), 213-238.
doi: 10.1016/0021-9045(92)90117-7. |
[11] |
P. Constantin, B. Levant and E. S. Titi,
Analytic study of shell models of turbulence, Physica D: Nonlinear Phenomena, 219 (2006), 120-141.
doi: 10.1016/j.physd.2006.05.015. |
[12] |
P. Constantin, B. Levant and E. S. Titi, Regularity of inviscid shell models of turbulence,
Physical Review E, 75 (2007), 016304, 10pp.
doi: 10.1103/PhysRevE.75.016304. |
[13] |
P. D. Ditlevsen,
Turbulence and Shell Models, Cambridge University Press, Cambridge, 2011. |
[14] |
U. Frisch,
Turbulence, Cambridge University Press, Cambridge, 1995. |
[15] |
E. B. Gledzer,
System of hydrodynamic type admitting two quadratic integrals of motion, Sov. Phys. Dokl., 18 (1973), 216-217.
|
[16] |
L. P. Kadanoff,
A Model of Turbulence, Reference Frame, Physics Today, September, 1995. |
[17] |
V. S. L'vov, E. Podivilov, A. Pomyalov, I. ocaccia and D. Vandembroucq,
Improved shell model of turbulence, Physical Review E, 58 (1998), 1811-1822.
doi: 10.1103/PhysRevE.58.1811. |
[18] |
J. M. McDonough, Introductory lectures on turbulence physics, mathematics and modeling. 2004. |
[19] |
K. Ohkitani and M. Yamada,
Temporal intermittency in the energy cascade process and local Lyapunov analysis in fully developed model of turbulence, Prog. Theor. Phys., 81 (1989), 329-341.
doi: 10.1143/PTP.81.329. |
[20] |
J. P. Raymond,
Optimal Control of Partial Differential Equations, Lecture Notes. |
[21] |
S. Sritharan,
Optimal Control of Viscous Flow, SIAM, 1998.
doi: 10.1137/1.9781611971415. |
show all references
References:
[1] |
F. Abergel and R. Temam,
On some control problems in fluid mechanics, Theoretical and Computational Fluid Dynamics, 1 (1990), 303-325.
doi: 10.1007/BF00271794. |
[2] |
V. Barbu,
Stabilization of Navier Stokes Flows, Stabilization of Navier-Stokes Flows, Springer London, 2011.
doi: 10.1007/978-0-85729-043-4. |
[3] |
V. Barbu,
Nonlinear Semigroups and Differential Equations in Banach Spaces, Bucharest-Noordhoff, Leyden: Editura Academiei, 1976. |
[4] |
V. Barbu and S. S. Sritharan,
Flow invariance preserving feedback controllers for the Navier-Stokes equation, Journal of Mathematical Analysis and Applications, 255 (2001), 281-307.
doi: 10.1006/jmaa.2000.7256. |
[5] |
V. Barbu,
Nonlinear Differential Equations of Monotone Types in Banach Spaces, Springer Science and Business Media, 2010.
doi: 10.1007/978-1-4419-5542-5. |
[6] |
T. Bohr, M. H. Jensen, G. Paladin and A. Vulpiani,
Dynamical Systems Approach to Turbulence, Cambridge University Press, 1998.
doi: 10.1017/CBO9780511599972. |
[7] |
H. Brezis,
Operateurs Maximaux Monotones et Semi-groupes de Contractions Dans Les Espaces de Hilbert, American Elsevier Publishing Co., Inc., New York, 1973. |
[8] |
L. Chong and X.-Q. Jin,
Nonlinearly constrained best approximation in Hilbert spaces: The strong CHIP and the basic constraint qualification, SIAM Journal on Optimization, 13 (2002), 228-239.
doi: 10.1137/S1052623401385600. |
[9] |
C. K. Chui, F. Deutsch and J. D. Ward,
Constrained best approximation in Hilbert space, Constructive Approximation, 6 (1990), 35-64.
doi: 10.1007/BF01891408. |
[10] |
C. K. Chui, F. Deutsch and J. D. Ward,
Constrained best approximation in Hilbert space, Ⅱ, Journal of Approximation Theory, 71 (1992), 213-238.
doi: 10.1016/0021-9045(92)90117-7. |
[11] |
P. Constantin, B. Levant and E. S. Titi,
Analytic study of shell models of turbulence, Physica D: Nonlinear Phenomena, 219 (2006), 120-141.
doi: 10.1016/j.physd.2006.05.015. |
[12] |
P. Constantin, B. Levant and E. S. Titi, Regularity of inviscid shell models of turbulence,
Physical Review E, 75 (2007), 016304, 10pp.
doi: 10.1103/PhysRevE.75.016304. |
[13] |
P. D. Ditlevsen,
Turbulence and Shell Models, Cambridge University Press, Cambridge, 2011. |
[14] |
U. Frisch,
Turbulence, Cambridge University Press, Cambridge, 1995. |
[15] |
E. B. Gledzer,
System of hydrodynamic type admitting two quadratic integrals of motion, Sov. Phys. Dokl., 18 (1973), 216-217.
|
[16] |
L. P. Kadanoff,
A Model of Turbulence, Reference Frame, Physics Today, September, 1995. |
[17] |
V. S. L'vov, E. Podivilov, A. Pomyalov, I. ocaccia and D. Vandembroucq,
Improved shell model of turbulence, Physical Review E, 58 (1998), 1811-1822.
doi: 10.1103/PhysRevE.58.1811. |
[18] |
J. M. McDonough, Introductory lectures on turbulence physics, mathematics and modeling. 2004. |
[19] |
K. Ohkitani and M. Yamada,
Temporal intermittency in the energy cascade process and local Lyapunov analysis in fully developed model of turbulence, Prog. Theor. Phys., 81 (1989), 329-341.
doi: 10.1143/PTP.81.329. |
[20] |
J. P. Raymond,
Optimal Control of Partial Differential Equations, Lecture Notes. |
[21] |
S. Sritharan,
Optimal Control of Viscous Flow, SIAM, 1998.
doi: 10.1137/1.9781611971415. |
[1] |
Theodore Tachim-Medjo. Optimal control of a two-phase flow model with state constraints. Mathematical Control and Related Fields, 2016, 6 (2) : 335-362. doi: 10.3934/mcrf.2016006 |
[2] |
Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations and Control Theory, 2022, 11 (2) : 347-371. doi: 10.3934/eect.2020110 |
[3] |
Huaiqiang Yu, Bin Liu. Pontryagin's principle for local solutions of optimal control governed by the 2D Navier-Stokes equations with mixed control-state constraints. Mathematical Control and Related Fields, 2012, 2 (1) : 61-80. doi: 10.3934/mcrf.2012.2.61 |
[4] |
Pavel I. Plotnikov, Jan Sokolowski. Optimal shape control of airfoil in compressible gas flow governed by Navier-Stokes equations. Evolution Equations and Control Theory, 2013, 2 (3) : 495-516. doi: 10.3934/eect.2013.2.495 |
[5] |
Changjie Fang, Weimin Han. Well-posedness and optimal control of a hemivariational inequality for nonstationary Stokes fluid flow. Discrete and Continuous Dynamical Systems, 2016, 36 (10) : 5369-5386. doi: 10.3934/dcds.2016036 |
[6] |
Stanisław Migórski. A note on optimal control problem for a hemivariational inequality modeling fluid flow. Conference Publications, 2013, 2013 (special) : 545-554. doi: 10.3934/proc.2013.2013.545 |
[7] |
T. Tachim Medjo. On the Newton method in robust control of fluid flow. Discrete and Continuous Dynamical Systems, 2003, 9 (5) : 1201-1222. doi: 10.3934/dcds.2003.9.1201 |
[8] |
Mikhail Gusev. On reachability analysis for nonlinear control systems with state constraints. Conference Publications, 2015, 2015 (special) : 579-587. doi: 10.3934/proc.2015.0579 |
[9] |
Eduardo Casas, Fredi Tröltzsch. Sparse optimal control for the heat equation with mixed control-state constraints. Mathematical Control and Related Fields, 2020, 10 (3) : 471-491. doi: 10.3934/mcrf.2020007 |
[10] |
Yat Tin Chow, Ali Pakzad. On the zeroth law of turbulence for the stochastically forced Navier-Stokes equations. Discrete and Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021270 |
[11] |
Serge Nicaise, Simon Stingelin, Fredi Tröltzsch. Optimal control of magnetic fields in flow measurement. Discrete and Continuous Dynamical Systems - S, 2015, 8 (3) : 579-605. doi: 10.3934/dcdss.2015.8.579 |
[12] |
Cheng-Zhong Xu, Gauthier Sallet. Multivariable boundary PI control and regulation of a fluid flow system. Mathematical Control and Related Fields, 2014, 4 (4) : 501-520. doi: 10.3934/mcrf.2014.4.501 |
[13] |
Vincenzo Basco, Piermarco Cannarsa, Hélène Frankowska. Necessary conditions for infinite horizon optimal control problems with state constraints. Mathematical Control and Related Fields, 2018, 8 (3&4) : 535-555. doi: 10.3934/mcrf.2018022 |
[14] |
Luís Tiago Paiva, Fernando A. C. C. Fontes. Adaptive time--mesh refinement in optimal control problems with state constraints. Discrete and Continuous Dynamical Systems, 2015, 35 (9) : 4553-4572. doi: 10.3934/dcds.2015.35.4553 |
[15] |
J.-P. Raymond. Nonlinear boundary control of semilinear parabolic problems with pointwise state constraints. Discrete and Continuous Dynamical Systems, 1997, 3 (3) : 341-370. doi: 10.3934/dcds.1997.3.341 |
[16] |
Changjun Yu, Shuxuan Su, Yanqin Bai. On the optimal control problems with characteristic time control constraints. Journal of Industrial and Management Optimization, 2022, 18 (2) : 1305-1320. doi: 10.3934/jimo.2021021 |
[17] |
Rafael Vázquez, Emmanuel Trélat, Jean-Michel Coron. Control for fast and stable Laminar-to-High-Reynolds-Numbers transfer in a 2D Navier-Stokes channel flow. Discrete and Continuous Dynamical Systems - B, 2008, 10 (4) : 925-956. doi: 10.3934/dcdsb.2008.10.925 |
[18] |
Xing Tan, Yilan Gu, Jimmy Xiangji Huang. An ontological account of flow-control components in BPMN process models. Big Data & Information Analytics, 2017, 2 (2) : 177-189. doi: 10.3934/bdia.2017016 |
[19] |
Yunfei Yuan, Changchun Liu. Optimal control for the coupled chemotaxis-fluid models in two space dimensions. Electronic Research Archive, 2021, 29 (6) : 4269-4296. doi: 10.3934/era.2021085 |
[20] |
Matthias Gerdts, Martin Kunkel. A nonsmooth Newton's method for discretized optimal control problems with state and control constraints. Journal of Industrial and Management Optimization, 2008, 4 (2) : 247-270. doi: 10.3934/jimo.2008.4.247 |
2020 Impact Factor: 1.081
Tools
Metrics
Other articles
by authors
[Back to Top]