• Previous Article
    Carleman estimates for forward and backward stochastic fourth order Schrödinger equations and their applications
  • EECT Home
  • This Issue
  • Next Article
    Control problems and invariant subspaces for sabra shell model of turbulence
September  2018, 7(3): 447-463. doi: 10.3934/eect.2018022

Null controllability of the incompressible Stokes equations in a 2-D channel using normal boundary control

1. 

Indian Institute of Science Education and Research, Kolkata, West Bengal, India

2. 

Department of Mathematics, Indian Institute of Technology, Bombay, Powai, Mumbai, Maharashtra 400076, India

3. 

Department of Mathematics, Virginia Tech, Blacksburg, VA 24061-0123, USA

* Corresponding author: Michael Renardy

Received  January 2018 Revised  March 2018 Published  July 2018

Fund Project: Shirshendu Chowdhury acknowledges financial support from an INSPIRE Fellowship. Michael Renardy and Debanjana Mitra acknowledge support from the National Science Foundation under Grant DMS-1514576.

In this paper, we consider the Stokes equations in a two-dimensional channel with periodic conditions in the direction of the channel. We establish null controllability of this system using a boundary control which acts on the normal component of the velocity only. We show null controllability of the system, subject to a constraint of zero average, by proving an observability inequality with the help of a Müntz-Szász Theorem.

Citation: Shirshendu Chowdhury, Debanjana Mitra, Michael Renardy. Null controllability of the incompressible Stokes equations in a 2-D channel using normal boundary control. Evolution Equations and Control Theory, 2018, 7 (3) : 447-463. doi: 10.3934/eect.2018022
References:
[1]

O. M. AamoM. Krstic and T. R. Bewley, Control of mixing by boundary feedback in 2D-channel, Automatica J. IFAC, 39 (2003), 1597-1606.  doi: 10.1016/S0005-1098(03)00140-7.

[2]

A. BaloghW.-J. Liu and M. Krstic, Stability enhancement by boundary control in 2D channel flow, IEEE Trans. Automat. Control, 46 (2001), 1696-1711.  doi: 10.1109/9.964681.

[3]

V. Barbu, Stabilization of a plane periodic channel flow by noise wall normal controllers, Systems Control Lett., 59 (2010), 608-614.  doi: 10.1016/j.sysconle.2010.07.005.

[4]

V. Barbu, Stabilization of a plane channel flow by wall normal controllers, Nonlinear Anal., 67 (2007), 2573-2588.  doi: 10.1016/j.na.2006.09.024.

[5]

V. Barbu, Stabilization of Navier-Stokes Flows, Communications and Control Engineering Series. Springer, London, 2011. doi: 10.1007/978-0-85729-043-4.

[6]

S. Chowdhury and S. Ervedoza, Open loop stabilization of incompressible Navier-Stokes equations in a 2d channel using power series expansion, https://www.math.univ-toulouse.fr/~ervedoza/Publis/Chowdhury-Erv.pdf.

[7]

J.-M. Coron, Control and Nonlinearity, Math. Surveys Monogr. 136, American Mathematical Society, Providence, RI, 2007. doi: 10.1090/surv/136.

[8]

J.-M. Coron and E. Crépeau, Exact boundary controllability of a nonlinear KdV equation with critical lengths, J. Eur. Math. Soc., 6 (2004), 367-398.  doi: 10.4171/JEMS/13.

[9]

J.-M. Coron and S. Guerrero, Local null controllability of the two-dimensional Navier-Stokes system in the torus with a control force having a vanishing component, J. Math. Pures Appl.(9), 92 (2009), 528-545.  doi: 10.1016/j.matpur.2009.05.015.

[10]

J.-M. Coron and P. Lissy, Local null controllability of the three-dimensional Navier-Stokes system with a distributed control having two vanishing components, Invent. Math., 198 (2014), 833-880.  doi: 10.1007/s00222-014-0512-5.

[11]

A. Lopez and E. Zuazua, Uniform null-controllability for the one-dimensional heat equation with rapidly oscillating periodic density, Ann. Inst. H. Poincaré Anal. Non Linéaire, 19 (2002), 543-580.  doi: 10.1016/S0294-1449(01)00092-0.

[12]

I. Munteanu, Normal feedback stabilization of periodic flows in a two-dimensional channel, J Optim. Theory Appl., 152 (2012), 413-438.  doi: 10.1007/s10957-011-9910-7.

[13]

I. Munteanu, Tangential feedback stabilization of periodic flows in a 2-D channel, Differ. Integral Equ., 24 (2011), 469-494. 

[14]

J.-P. Raymond, Stokes and Navier-Stokes equations with nonhomogeneous boundary conditions, Ann. Inst. H. Poincaré Anal. Non Linéaire, 24 (2007), 921-951.  doi: 10.1016/j.anihpc.2006.06.008.

[15]

J.-P. Raymond, Feedback boundary stabilization of the two-dimensional Navier-Stokes equations, SIAM J. Control Optim., 45 (2006), 790-828.  doi: 10.1137/050628726.

[16]

R. Triggiani, Stability enhancement of a 2-D linear Navier-Stokes channel flow by a 2-D wall-normal boundary controller, Discrete Contin. Dyn. Syst. Ser. B, 8 (2007), 279-314.  doi: 10.3934/dcdsb.2007.8.279.

[17]

R. VázquezE. Trélat and J.-M. Coron, Control for fast and stable laminar-to-high-Reynolds-numbers transfer in a 2D Navier-Stokes channel flow, Discrete Contin. Dyn. Syst. Ser. B, 10 (2008), 925-956.  doi: 10.3934/dcdsb.2008.10.925.

[18]

R. Vázquez and M. Krstic, A closed-form feedback controller for stabilization of the linearized 2-D Navier-Stokes Poiseuille system, IEEE Trans. Automat. Control, 52 (2007), 2298-2312.  doi: 10.1109/TAC.2007.910686.

show all references

References:
[1]

O. M. AamoM. Krstic and T. R. Bewley, Control of mixing by boundary feedback in 2D-channel, Automatica J. IFAC, 39 (2003), 1597-1606.  doi: 10.1016/S0005-1098(03)00140-7.

[2]

A. BaloghW.-J. Liu and M. Krstic, Stability enhancement by boundary control in 2D channel flow, IEEE Trans. Automat. Control, 46 (2001), 1696-1711.  doi: 10.1109/9.964681.

[3]

V. Barbu, Stabilization of a plane periodic channel flow by noise wall normal controllers, Systems Control Lett., 59 (2010), 608-614.  doi: 10.1016/j.sysconle.2010.07.005.

[4]

V. Barbu, Stabilization of a plane channel flow by wall normal controllers, Nonlinear Anal., 67 (2007), 2573-2588.  doi: 10.1016/j.na.2006.09.024.

[5]

V. Barbu, Stabilization of Navier-Stokes Flows, Communications and Control Engineering Series. Springer, London, 2011. doi: 10.1007/978-0-85729-043-4.

[6]

S. Chowdhury and S. Ervedoza, Open loop stabilization of incompressible Navier-Stokes equations in a 2d channel using power series expansion, https://www.math.univ-toulouse.fr/~ervedoza/Publis/Chowdhury-Erv.pdf.

[7]

J.-M. Coron, Control and Nonlinearity, Math. Surveys Monogr. 136, American Mathematical Society, Providence, RI, 2007. doi: 10.1090/surv/136.

[8]

J.-M. Coron and E. Crépeau, Exact boundary controllability of a nonlinear KdV equation with critical lengths, J. Eur. Math. Soc., 6 (2004), 367-398.  doi: 10.4171/JEMS/13.

[9]

J.-M. Coron and S. Guerrero, Local null controllability of the two-dimensional Navier-Stokes system in the torus with a control force having a vanishing component, J. Math. Pures Appl.(9), 92 (2009), 528-545.  doi: 10.1016/j.matpur.2009.05.015.

[10]

J.-M. Coron and P. Lissy, Local null controllability of the three-dimensional Navier-Stokes system with a distributed control having two vanishing components, Invent. Math., 198 (2014), 833-880.  doi: 10.1007/s00222-014-0512-5.

[11]

A. Lopez and E. Zuazua, Uniform null-controllability for the one-dimensional heat equation with rapidly oscillating periodic density, Ann. Inst. H. Poincaré Anal. Non Linéaire, 19 (2002), 543-580.  doi: 10.1016/S0294-1449(01)00092-0.

[12]

I. Munteanu, Normal feedback stabilization of periodic flows in a two-dimensional channel, J Optim. Theory Appl., 152 (2012), 413-438.  doi: 10.1007/s10957-011-9910-7.

[13]

I. Munteanu, Tangential feedback stabilization of periodic flows in a 2-D channel, Differ. Integral Equ., 24 (2011), 469-494. 

[14]

J.-P. Raymond, Stokes and Navier-Stokes equations with nonhomogeneous boundary conditions, Ann. Inst. H. Poincaré Anal. Non Linéaire, 24 (2007), 921-951.  doi: 10.1016/j.anihpc.2006.06.008.

[15]

J.-P. Raymond, Feedback boundary stabilization of the two-dimensional Navier-Stokes equations, SIAM J. Control Optim., 45 (2006), 790-828.  doi: 10.1137/050628726.

[16]

R. Triggiani, Stability enhancement of a 2-D linear Navier-Stokes channel flow by a 2-D wall-normal boundary controller, Discrete Contin. Dyn. Syst. Ser. B, 8 (2007), 279-314.  doi: 10.3934/dcdsb.2007.8.279.

[17]

R. VázquezE. Trélat and J.-M. Coron, Control for fast and stable laminar-to-high-Reynolds-numbers transfer in a 2D Navier-Stokes channel flow, Discrete Contin. Dyn. Syst. Ser. B, 10 (2008), 925-956.  doi: 10.3934/dcdsb.2008.10.925.

[18]

R. Vázquez and M. Krstic, A closed-form feedback controller for stabilization of the linearized 2-D Navier-Stokes Poiseuille system, IEEE Trans. Automat. Control, 52 (2007), 2298-2312.  doi: 10.1109/TAC.2007.910686.

[1]

Lahcen Maniar, Martin Meyries, Roland Schnaubelt. Null controllability for parabolic equations with dynamic boundary conditions. Evolution Equations and Control Theory, 2017, 6 (3) : 381-407. doi: 10.3934/eect.2017020

[2]

Qi Lü, Enrique Zuazua. Robust null controllability for heat equations with unknown switching control mode. Discrete and Continuous Dynamical Systems, 2014, 34 (10) : 4183-4210. doi: 10.3934/dcds.2014.34.4183

[3]

Fengyan Yang. Exact boundary null controllability for a coupled system of plate equations with variable coefficients. Evolution Equations and Control Theory, 2021  doi: 10.3934/eect.2021036

[4]

Farid Ammar Khodja, Cherif Bouzidi, Cédric Dupaix, Lahcen Maniar. Null controllability of retarded parabolic equations. Mathematical Control and Related Fields, 2014, 4 (1) : 1-15. doi: 10.3934/mcrf.2014.4.1

[5]

Pitágoras Pinheiro de Carvalho, Juan Límaco, Denilson Menezes, Yuri Thamsten. Local null controllability of a class of non-Newtonian incompressible viscous fluids. Evolution Equations and Control Theory, 2021  doi: 10.3934/eect.2021043

[6]

Lydia Ouaili. Minimal time of null controllability of two parabolic equations. Mathematical Control and Related Fields, 2020, 10 (1) : 89-112. doi: 10.3934/mcrf.2019031

[7]

Larissa V. Fardigola. Transformation operators in controllability problems for the wave equations with variable coefficients on a half-axis controlled by the Dirichlet boundary condition. Mathematical Control and Related Fields, 2015, 5 (1) : 31-53. doi: 10.3934/mcrf.2015.5.31

[8]

Brahim Allal, Abdelkarim Hajjaj, Lahcen Maniar, Jawad Salhi. Null controllability for singular cascade systems of $ n $-coupled degenerate parabolic equations by one control force. Evolution Equations and Control Theory, 2021, 10 (3) : 545-573. doi: 10.3934/eect.2020080

[9]

Abdelaziz Khoutaibi, Lahcen Maniar. Null controllability for a heat equation with dynamic boundary conditions and drift terms. Evolution Equations and Control Theory, 2020, 9 (2) : 535-559. doi: 10.3934/eect.2020023

[10]

Kuntal Bhandari, Franck Boyer. Boundary null-controllability of coupled parabolic systems with Robin conditions. Evolution Equations and Control Theory, 2021, 10 (1) : 61-102. doi: 10.3934/eect.2020052

[11]

Abdelaziz Khoutaibi, Lahcen Maniar, Omar Oukdach. Null controllability for semilinear heat equation with dynamic boundary conditions. Discrete and Continuous Dynamical Systems - S, 2022, 15 (6) : 1525-1546. doi: 10.3934/dcdss.2022087

[12]

Tian Ma, Shouhong Wang. Structure of 2D incompressible flows with the Dirichlet boundary conditions. Discrete and Continuous Dynamical Systems - B, 2001, 1 (1) : 29-41. doi: 10.3934/dcdsb.2001.1.29

[13]

Quan Wang, Hong Luo, Tian Ma. Boundary layer separation of 2-D incompressible Dirichlet flows. Discrete and Continuous Dynamical Systems - B, 2015, 20 (2) : 675-682. doi: 10.3934/dcdsb.2015.20.675

[14]

Shijin Ding, Zhilin Lin, Dongjuan Niu. Boundary layer for 3D plane parallel channel flows of nonhomogeneous incompressible Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2020, 40 (8) : 4579-4596. doi: 10.3934/dcds.2020193

[15]

Franck Boyer, Pierre Fabrie. Outflow boundary conditions for the incompressible non-homogeneous Navier-Stokes equations. Discrete and Continuous Dynamical Systems - B, 2007, 7 (2) : 219-250. doi: 10.3934/dcdsb.2007.7.219

[16]

Linjie Xiong. Incompressible Limit of isentropic Navier-Stokes equations with Navier-slip boundary. Kinetic and Related Models, 2018, 11 (3) : 469-490. doi: 10.3934/krm.2018021

[17]

J. Carmelo Flores, Luz De Teresa. Null controllability of one dimensional degenerate parabolic equations with first order terms. Discrete and Continuous Dynamical Systems - B, 2020, 25 (10) : 3963-3981. doi: 10.3934/dcdsb.2020136

[18]

Enrique Fernández-Cara, Luz de Teresa. Null controllability of a cascade system of parabolic-hyperbolic equations. Discrete and Continuous Dynamical Systems, 2004, 11 (2&3) : 699-714. doi: 10.3934/dcds.2004.11.699

[19]

Lin Yan, Bin Wu. Null controllability for a class of stochastic singular parabolic equations with the convection term. Discrete and Continuous Dynamical Systems - B, 2022, 27 (6) : 3213-3240. doi: 10.3934/dcdsb.2021182

[20]

Mehdi Badra. Abstract settings for stabilization of nonlinear parabolic system with a Riccati-based strategy. Application to Navier-Stokes and Boussinesq equations with Neumann or Dirichlet control. Discrete and Continuous Dynamical Systems, 2012, 32 (4) : 1169-1208. doi: 10.3934/dcds.2012.32.1169

2020 Impact Factor: 1.081

Metrics

  • PDF downloads (239)
  • HTML views (234)
  • Cited by (1)

[Back to Top]