September  2018, 7(3): 501-529. doi: 10.3934/eect.2018024

Optimal control of second order delay-discrete and delay-differential inclusions with state constraints

1. 

Department of Mathematics, Istanbul Technical University, Istanbul, Turkey

2. 

Azerbaijan National Academy of Sciences Institute of Control Systems, Baku, Azerbaijan

* Corresponding author: elimhan22@yahoo.com

Received  June 2017 Revised  February 2018 Published  July 2018

The present paper studies a new class of problems of optimal control theory with state constraints and second order delay-discrete (DSIs) and delay-differential inclusions (DFIs). The basic approach to solving this problem is based on the discretization method. Thus under the "regularity condition the necessary and sufficient conditions of optimality for problems with second order delay-discrete and delay-approximate DSIs are investigated. Then by using discrete approximations as a vehicle, in the forms of Euler-Lagrange and Hamiltonian type inclusions the sufficient conditions of optimality for delay-DFIs, including the peculiar transversality ones, are proved. Here our main idea is the use of equivalence relations for subdifferentials of Hamiltonian functions and locally adjoint mappings (LAMs), which allow us to make a bridge between the basic optimality conditions of second order delay-DSIs and delay-discrete-approximate problems. In particular, applications of these results to the second order semilinear optimal control problem are illustrated as well as the optimality conditions for non-delayed problems are derived.

Citation: Elimhan N. Mahmudov. Optimal control of second order delay-discrete and delay-differential inclusions with state constraints. Evolution Equations & Control Theory, 2018, 7 (3) : 501-529. doi: 10.3934/eect.2018024
References:
[1]

N. V. Antipina and V. A. Dykhta, Linear Lyapunov-Krotov functions and sufficient conditions for optimality in the form of the maximum principle, Russian Math. (Iz. VUZ), 46 (2002), 9-20.   Google Scholar

[2]

D. L. AzzamA. Makhlouf and L. Thibault, Existence and relaxation theorem for a second order differential inclusion, Numer. Funct. Anal. Optim., 31 (2010), 1103-1119.  doi: 10.1080/01630563.2010.510982.  Google Scholar

[3]

V. Barbu and T. Precupanu, Convex control problems in banach spaces, Convexity and Optimization in Banach Spaces, (2012), 233-364.  doi: 10.1007/978-94-007-2247-7_4.  Google Scholar

[4]

V. I. Blagodatskikh, Sufficient conditions for optimality in problems with state constraints, Appl. Math. Optim., 7 (1981), 149-157.  doi: 10.1007/BF01442113.  Google Scholar

[5]

V. I. Blagodatskikh and A. F. Filippov, Differential inclusions and optimal control, Trudy Mat. Inst. Steklov., 169 (1985), 194-252, 255.   Google Scholar

[6]

A. Bressan, Differential inclusions and the control of forest fires, J. Diff. Equ. (special volume in honor of A. Cellina and J. Yorke), 243 (2007), 179-207.  doi: 10.1016/j.jde.2007.03.009.  Google Scholar

[7]

G. ButtazzoM. E. DrakhlinL. Freddi and E. Stepanov, Homogenization of Optimal Control Problems for Functional Differential Equations, J. Optim. Theory Appl., 93 (1997), 103-119.  doi: 10.1023/A:1022649817825.  Google Scholar

[8]

P. Cannarsa and P. R. Wolenski, Semiconcavity of the value function for a class of differential inclusions, Discrete Contin. Dyn. Syst. Ser. A, 29 (2011), 453-466.  doi: 10.3934/dcds.2011.29.453.  Google Scholar

[9]

S. Hu and N. S. Papageorgiou, Delay differential inclusions with constraints, Proceed.AMS, 123 (1995), 2141-2150.  doi: 10.1090/S0002-9939-1995-1257111-9.  Google Scholar

[10]

A. D. Ioffe and V. Tikhomirov, Theory of Extremal Problems, "Nauka", Moscow, 1974; English transl., North-Holland, Amsterdam, 1978.  Google Scholar

[11]

R. J. Kipka and Y. S. Ledyaev, Optimal control of differential inclusions on manifolds, Discrete Contin. Dyn. Syst. Ser. A, 35 (2015), 4455-4475.  doi: 10.3934/dcds.2015.35.4455.  Google Scholar

[12]

N. C. Kourogenis, Strongly nonlinear second order differential inclusions with generalized boundary conditions, J. Math. Anal. Appl., 287 (2003), 348-364.  doi: 10.1016/S0022-247X(02)00511-5.  Google Scholar

[13]

V. F. Krotov, Methods of solution of variational problems on the basis of sufficient conditions of absolute minimum, Avtomat. i Telemekh., 23 (1962), 1571-1583.   Google Scholar

[14]

I. Lasiecka and N. Fourrier, Regularity and stability of a wave equation with strong damping and dynamic boundary conditions, Evol. Equ. Contr. Theory (EECT), 2 (2013), 631-667.  doi: 10.3934/eect.2013.2.631.  Google Scholar

[15]

E. N. Mahmudov, Approximation and Optimization of Discrete and Differential Inclusions, Elsevier, 2011. doi: 10.1016/B978-0-12-388428-2.00001-1.  Google Scholar

[16]

E. N. Mahmudov, Duality in the problems of optimal-control for systems described by convex differential-inclusions with delay, Prob. Contr. Inform. Theory, 16 (1987), 411-422.   Google Scholar

[17]

E. N. Mahmudov, Locally adjoint mappings and optimization of the first boundary value problem for hyperbolic type discrete and differential inclusions, Nonlin. Anal., 67 (2007), 2966-2981.  doi: 10.1016/j.na.2006.09.054.  Google Scholar

[18]

E. N. Mahmudov, Necessary and sufficient conditions for discrete and differential inclusions of elliptic type, J. Math. Anal. Appl., 323 (2006), 768-789.  doi: 10.1016/j.jmaa.2005.10.069.  Google Scholar

[19]

E. N. Mahmudov, Optimal Control of Cauchy Problem for First-Order Discrete and Partial Differential Inclusions, J. Dyn. Contr. Syst., 15 (2009), 587-610.  doi: 10.1007/s10883-009-9073-0.  Google Scholar

[20]

E. N. Mahmudov, Approximation and Optimization of Higher order discrete and differential inclusions, Nonlin. Diff. Equat. Appl. NoDEA, 21 (2014), 1-26.  doi: 10.1007/s00030-013-0234-1.  Google Scholar

[21]

E. N. Mahmudov, Mathematical programming and polyhedral optimization of second order discrete and differential inclusions, Pacific J. Optim., 11 (2015), 511-525.   Google Scholar

[22]

E. N. Mahmudov, Convex optimization of second order discrete and differential inclusions with inequality constraints, J. Convex Anal., 25 (2018), 293-318.   Google Scholar

[23]

B. S. Mordukhovich, Variational Analysis and Generalized Differentiation, I: Basic Theory; II: Applications, Grundlehren Series (Fundamental Principles of Mathematical Sciences), Vol. 330 and 331, Springer, 2006.  Google Scholar

[24]

B. S. Mordukhovich and L. Wang, Optimal control of delay systems with differential and algebraic dynamic constraints, ESAIM: COCV, 11 (2005), 285-309.  doi: 10.1051/cocv:2005008.  Google Scholar

[25]

N. S. Papageorgiou and V. D. Rădulescu, Periodic solutions for time-dependent subdifferential evolution inclusions, Evol. Equ. Contr. Theory (EECT), 6 (2017), 277-297.  doi: 10.3934/eect.2017015.  Google Scholar

[26]

D. Q. AV. T. Luan and D. Q. Long, Iterative method for solving a fourth order differential equation with nonlinear boundary condition, Appl. Math. Sci., 4 (2010), 3467-3481.   Google Scholar

[27]

S. H. Saker, R. P. Agarwal and D. O'Regan, Properties of solutions of fourth-order differential equations with boundary conditions, J. Inequalit. Appl., 278 (2013), 15pp. doi: 10.1186/1029-242X-2013-278.  Google Scholar

[28]

Q. Zhang and G. Li, Nonlinear boundary value problems for second order differential inclusions, Nonlin. Anal.: Theory, Methods Appl., 70 (2009), 3390-3406.  doi: 10.1016/j.na.2008.05.007.  Google Scholar

[29]

Y. ZhouV. Vijayakumar and R. Murugesu, Controllability for fractional evolution inclusions without compactness, Evol. Equ. Contr. Theory (EECT), 4 (2015), 507-524.  doi: 10.3934/eect.2015.4.507.  Google Scholar

[30]

D. G. Zill and M. R. Cullen, Differential Equations with Boundary-Value Problems, 5$^{nd}$ edition, Brooks/Cole, 2001. Google Scholar

show all references

References:
[1]

N. V. Antipina and V. A. Dykhta, Linear Lyapunov-Krotov functions and sufficient conditions for optimality in the form of the maximum principle, Russian Math. (Iz. VUZ), 46 (2002), 9-20.   Google Scholar

[2]

D. L. AzzamA. Makhlouf and L. Thibault, Existence and relaxation theorem for a second order differential inclusion, Numer. Funct. Anal. Optim., 31 (2010), 1103-1119.  doi: 10.1080/01630563.2010.510982.  Google Scholar

[3]

V. Barbu and T. Precupanu, Convex control problems in banach spaces, Convexity and Optimization in Banach Spaces, (2012), 233-364.  doi: 10.1007/978-94-007-2247-7_4.  Google Scholar

[4]

V. I. Blagodatskikh, Sufficient conditions for optimality in problems with state constraints, Appl. Math. Optim., 7 (1981), 149-157.  doi: 10.1007/BF01442113.  Google Scholar

[5]

V. I. Blagodatskikh and A. F. Filippov, Differential inclusions and optimal control, Trudy Mat. Inst. Steklov., 169 (1985), 194-252, 255.   Google Scholar

[6]

A. Bressan, Differential inclusions and the control of forest fires, J. Diff. Equ. (special volume in honor of A. Cellina and J. Yorke), 243 (2007), 179-207.  doi: 10.1016/j.jde.2007.03.009.  Google Scholar

[7]

G. ButtazzoM. E. DrakhlinL. Freddi and E. Stepanov, Homogenization of Optimal Control Problems for Functional Differential Equations, J. Optim. Theory Appl., 93 (1997), 103-119.  doi: 10.1023/A:1022649817825.  Google Scholar

[8]

P. Cannarsa and P. R. Wolenski, Semiconcavity of the value function for a class of differential inclusions, Discrete Contin. Dyn. Syst. Ser. A, 29 (2011), 453-466.  doi: 10.3934/dcds.2011.29.453.  Google Scholar

[9]

S. Hu and N. S. Papageorgiou, Delay differential inclusions with constraints, Proceed.AMS, 123 (1995), 2141-2150.  doi: 10.1090/S0002-9939-1995-1257111-9.  Google Scholar

[10]

A. D. Ioffe and V. Tikhomirov, Theory of Extremal Problems, "Nauka", Moscow, 1974; English transl., North-Holland, Amsterdam, 1978.  Google Scholar

[11]

R. J. Kipka and Y. S. Ledyaev, Optimal control of differential inclusions on manifolds, Discrete Contin. Dyn. Syst. Ser. A, 35 (2015), 4455-4475.  doi: 10.3934/dcds.2015.35.4455.  Google Scholar

[12]

N. C. Kourogenis, Strongly nonlinear second order differential inclusions with generalized boundary conditions, J. Math. Anal. Appl., 287 (2003), 348-364.  doi: 10.1016/S0022-247X(02)00511-5.  Google Scholar

[13]

V. F. Krotov, Methods of solution of variational problems on the basis of sufficient conditions of absolute minimum, Avtomat. i Telemekh., 23 (1962), 1571-1583.   Google Scholar

[14]

I. Lasiecka and N. Fourrier, Regularity and stability of a wave equation with strong damping and dynamic boundary conditions, Evol. Equ. Contr. Theory (EECT), 2 (2013), 631-667.  doi: 10.3934/eect.2013.2.631.  Google Scholar

[15]

E. N. Mahmudov, Approximation and Optimization of Discrete and Differential Inclusions, Elsevier, 2011. doi: 10.1016/B978-0-12-388428-2.00001-1.  Google Scholar

[16]

E. N. Mahmudov, Duality in the problems of optimal-control for systems described by convex differential-inclusions with delay, Prob. Contr. Inform. Theory, 16 (1987), 411-422.   Google Scholar

[17]

E. N. Mahmudov, Locally adjoint mappings and optimization of the first boundary value problem for hyperbolic type discrete and differential inclusions, Nonlin. Anal., 67 (2007), 2966-2981.  doi: 10.1016/j.na.2006.09.054.  Google Scholar

[18]

E. N. Mahmudov, Necessary and sufficient conditions for discrete and differential inclusions of elliptic type, J. Math. Anal. Appl., 323 (2006), 768-789.  doi: 10.1016/j.jmaa.2005.10.069.  Google Scholar

[19]

E. N. Mahmudov, Optimal Control of Cauchy Problem for First-Order Discrete and Partial Differential Inclusions, J. Dyn. Contr. Syst., 15 (2009), 587-610.  doi: 10.1007/s10883-009-9073-0.  Google Scholar

[20]

E. N. Mahmudov, Approximation and Optimization of Higher order discrete and differential inclusions, Nonlin. Diff. Equat. Appl. NoDEA, 21 (2014), 1-26.  doi: 10.1007/s00030-013-0234-1.  Google Scholar

[21]

E. N. Mahmudov, Mathematical programming and polyhedral optimization of second order discrete and differential inclusions, Pacific J. Optim., 11 (2015), 511-525.   Google Scholar

[22]

E. N. Mahmudov, Convex optimization of second order discrete and differential inclusions with inequality constraints, J. Convex Anal., 25 (2018), 293-318.   Google Scholar

[23]

B. S. Mordukhovich, Variational Analysis and Generalized Differentiation, I: Basic Theory; II: Applications, Grundlehren Series (Fundamental Principles of Mathematical Sciences), Vol. 330 and 331, Springer, 2006.  Google Scholar

[24]

B. S. Mordukhovich and L. Wang, Optimal control of delay systems with differential and algebraic dynamic constraints, ESAIM: COCV, 11 (2005), 285-309.  doi: 10.1051/cocv:2005008.  Google Scholar

[25]

N. S. Papageorgiou and V. D. Rădulescu, Periodic solutions for time-dependent subdifferential evolution inclusions, Evol. Equ. Contr. Theory (EECT), 6 (2017), 277-297.  doi: 10.3934/eect.2017015.  Google Scholar

[26]

D. Q. AV. T. Luan and D. Q. Long, Iterative method for solving a fourth order differential equation with nonlinear boundary condition, Appl. Math. Sci., 4 (2010), 3467-3481.   Google Scholar

[27]

S. H. Saker, R. P. Agarwal and D. O'Regan, Properties of solutions of fourth-order differential equations with boundary conditions, J. Inequalit. Appl., 278 (2013), 15pp. doi: 10.1186/1029-242X-2013-278.  Google Scholar

[28]

Q. Zhang and G. Li, Nonlinear boundary value problems for second order differential inclusions, Nonlin. Anal.: Theory, Methods Appl., 70 (2009), 3390-3406.  doi: 10.1016/j.na.2008.05.007.  Google Scholar

[29]

Y. ZhouV. Vijayakumar and R. Murugesu, Controllability for fractional evolution inclusions without compactness, Evol. Equ. Contr. Theory (EECT), 4 (2015), 507-524.  doi: 10.3934/eect.2015.4.507.  Google Scholar

[30]

D. G. Zill and M. R. Cullen, Differential Equations with Boundary-Value Problems, 5$^{nd}$ edition, Brooks/Cole, 2001. Google Scholar

[1]

V. Vijayakumar, R. Udhayakumar, K. Kavitha. On the approximate controllability of neutral integro-differential inclusions of Sobolev-type with infinite delay. Evolution Equations & Control Theory, 2021, 10 (2) : 271-296. doi: 10.3934/eect.2020066

[2]

Elimhan N. Mahmudov. Second order discrete time-varying and time-invariant linear continuous systems and Kalman type conditions. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2021010

[3]

Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027

[4]

Seddigheh Banihashemi, Hossein Jafaria, Afshin Babaei. A novel collocation approach to solve a nonlinear stochastic differential equation of fractional order involving a constant delay. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021025

[5]

Anton Schiela, Julian Ortiz. Second order directional shape derivatives of integrals on submanifolds. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021017

[6]

Wolf-Jüergen Beyn, Janosch Rieger. The implicit Euler scheme for one-sided Lipschitz differential inclusions. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 409-428. doi: 10.3934/dcdsb.2010.14.409

[7]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2619-2633. doi: 10.3934/dcds.2020377

[8]

Simone Fiori, Italo Cervigni, Mattia Ippoliti, Claudio Menotta. Synthetic nonlinear second-order oscillators on Riemannian manifolds and their numerical simulation. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021088

[9]

Qian Liu. The lower bounds on the second-order nonlinearity of three classes of Boolean functions. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2020136

[10]

Kaifang Liu, Lunji Song, Shan Zhao. A new over-penalized weak galerkin method. Part Ⅰ: Second-order elliptic problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2411-2428. doi: 10.3934/dcdsb.2020184

[11]

Li Chu, Bo Wang, Jie Zhang, Hong-Wei Zhang. Convergence analysis of a smoothing SAA method for a stochastic mathematical program with second-order cone complementarity constraints. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1863-1886. doi: 10.3934/jimo.2020050

[12]

Dariusz Idczak. A Gronwall lemma for functions of two variables and its application to partial differential equations of fractional order. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021019

[13]

Zemer Kosloff, Terry Soo. The orbital equivalence of Bernoulli actions and their Sinai factors. Journal of Modern Dynamics, 2021, 17: 145-182. doi: 10.3934/jmd.2021005

[14]

Mohamed Ouzahra. Approximate controllability of the semilinear reaction-diffusion equation governed by a multiplicative control. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021081

[15]

Ying Sui, Huimin Yu. Singularity formation for compressible Euler equations with time-dependent damping. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021062

[16]

K. Ravikumar, Manil T. Mohan, A. Anguraj. Approximate controllability of a non-autonomous evolution equation in Banach spaces. Numerical Algebra, Control & Optimization, 2021, 11 (3) : 461-485. doi: 10.3934/naco.2020038

[17]

Qiwei Wu, Liping Luan. Large-time behavior of solutions to unipolar Euler-Poisson equations with time-dependent damping. Communications on Pure & Applied Analysis, 2021, 20 (3) : 995-1023. doi: 10.3934/cpaa.2021003

[18]

Yunjuan Jin, Aifang Qu, Hairong Yuan. Radon measure solutions for steady compressible hypersonic-limit Euler flows passing cylindrically symmetric conical bodies. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021048

[19]

Pavol Bokes. Exact and WKB-approximate distributions in a gene expression model with feedback in burst frequency, burst size, and protein stability. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021126

[20]

Muhammad Aslam Noor, Khalida Inayat Noor. Properties of higher order preinvex functions. Numerical Algebra, Control & Optimization, 2021, 11 (3) : 431-441. doi: 10.3934/naco.2020035

2019 Impact Factor: 0.953

Metrics

  • PDF downloads (161)
  • HTML views (291)
  • Cited by (4)

Other articles
by authors

[Back to Top]