December  2018, 7(4): 545-570. doi: 10.3934/eect.2018026

Observability of wave equation with Ventcel dynamic condition

Laboratoire AMNEDP, Faculté de mathématiques, USTHB, Alger, Algérie

* Corresponding author: Djamel Eddine Teniou

Received  December 2017 Revised  August 2018 Published  September 2018

The main purpose of this work is to prove a new variant of Mehrenberger's inequality. Subsequently, we apply it to establish several observability estimates for the wave equation subject to Ventcel dynamic condition.

Citation: Imen Benabbas, Djamel Eddine Teniou. Observability of wave equation with Ventcel dynamic condition. Evolution Equations & Control Theory, 2018, 7 (4) : 545-570. doi: 10.3934/eect.2018026
References:
[1]

C. BardosG. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary, SIAM J. Control Optim., 30 (1992), 1024-1065.  doi: 10.1137/0330055.  Google Scholar

[2]

P. BindingP. J. Browne and K. Seddighi, Sturm-Liouville problems with eigenparameter dependent boundary conditions, Proc. Roy. Soc. Edinburgh, 37 (1993), 57-72.  doi: 10.1017/S0013091500018691.  Google Scholar

[3]

M. CavalcantiV. Domingos CavalcantiR. Fukuoka and D. Toundykov, Stabilization of the damped wave equation with Cauchy-Ventcel boundary conditions, J. Evol. Equ., 9 (2009), 143-169.  doi: 10.1007/s00028-009-0002-1.  Google Scholar

[4]

M. CavalcantiA. Khemmoudj and M. Medjden, Uniform stabilization of the damped Cauchy-Ventcel problem with variable coefficients and dynamic boundary conditions, J. Math. Anal. Appl., 328 (2007), 900-930.  doi: 10.1016/j.jmaa.2006.05.070.  Google Scholar

[5]

C. Fulton, Two-point boundary value problems with eigenvalue parameter contained in the boundary conditions, Proc. Roy. Soc. Edinburgh, 77A (1977), 293-308.  doi: 10.1017/S030821050002521X.  Google Scholar

[6]

C. Fulton, Singular eigenvalue problems with eigenvalue parameter contained in the boundary conditions, Proc. Roy. Soc. Edinburgh, 87A (1980), 1-34.  doi: 10.1017/S0308210500012312.  Google Scholar

[7]

C. Gal and L. Tebou, Carleman inequalities for wave equations with oscillatory boundary conditions and application, SIAM J. Control Optim., 55 (2017), 324-364.  doi: 10.1137/15M1032211.  Google Scholar

[8]

P. Grisvard, Elliptic Problems in Nonsmooth Domains, Pitman, London, 1985.  Google Scholar

[9]

A. E. Ingham, Some trigonometrical inequalities with applications in the theory of series, Math. Z., 41 (1936), 367-379.  doi: 10.1007/BF01180426.  Google Scholar

[10]

V. Komornik, Exact Controllability and Stabilization. The Multiplier Method, Masson, Paris, and John Wiley & Sons, Chichester, 1994.  Google Scholar

[11]

V. Komornik and P. Loreti, Fourier Series in Control Theory, Springer-Verlag, New York, 2005.  Google Scholar

[12]

V. Komornik and P. Loreti, Observability of rectangular membranes and plates on small sets, EECT., 3 (2014), 287-304.  doi: 10.3934/eect.2014.3.287.  Google Scholar

[13]

V. Komornik and B. Miara, Cross-like internal observability of ractangular membranes, EECT., 3 (2014), 135-146.  doi: 10.3934/eect.2014.3.135.  Google Scholar

[14]

V. Komornik and P. Loreti, Observability of square membranes by Fourier series methods, Bulletin of the south Ural state university, Series "Mathematical modelling, programming and computer software", 8 (2015), 127-140.  doi: 10.14529/mmp150308.  Google Scholar

[15]

K. Lemrabet, Problème aux limites de Ventcel dans un domaine non régulier, CRAS Paris, 300 (1985), 531-534.   Google Scholar

[16]

K. Lemrabet, Etude de Divers Problèmes Aux Limites de Ventcel D'origine Physique ou Mécanique dans des Domaines non Réguliers, Ph.D thesis, USTHB, Algiers, 1987. Google Scholar

[17]

K. Lemrabet and D. Teniou, Un problème d'évolution de type Ventcel, Maghreb Math. Rev., 1 (1992), 15-29.   Google Scholar

[18]

J.-L. Lions, Contrôlabilité Exacte Perturbation et Stabilisation De Systémes Distribués I, Masson, Paris, 1988.  Google Scholar

[19]

T. Masrour, The wave equation with dynamic Wentzell boundary condition in polygonal and polyhedral domains: Observation and exact controllability, International Journal of Partial Differential Equations and Applications, 2 (2014), 13-22.   Google Scholar

[20]

M. Mehrenberger, An Ingham type proof for the boundary observability of a N-d wave equation, C. R. Math. Acad. Sci. Paris, 347 (2009), 63-68.  doi: 10.1016/j.crma.2008.11.002.  Google Scholar

[21]

S. Nicaise and K. Laoubi, Polynomial stabilization of the wave equation with Ventcel's boundary conditions, Math. Nachr., 283 (2010), 1428-1438.  doi: 10.1002/mana.200710162.  Google Scholar

[22]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, New York, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[23]

M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups, Birkhauser Verlag, Basel, 2009. doi: 10.1007/978-3-7643-8994-9.  Google Scholar

[24]

J. Walter, Regular eigenvalue problems with eigenvalue parameter in the boundary conditions, Math. Z., 133 (1973), 301-312.  doi: 10.1007/BF01177870.  Google Scholar

show all references

References:
[1]

C. BardosG. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary, SIAM J. Control Optim., 30 (1992), 1024-1065.  doi: 10.1137/0330055.  Google Scholar

[2]

P. BindingP. J. Browne and K. Seddighi, Sturm-Liouville problems with eigenparameter dependent boundary conditions, Proc. Roy. Soc. Edinburgh, 37 (1993), 57-72.  doi: 10.1017/S0013091500018691.  Google Scholar

[3]

M. CavalcantiV. Domingos CavalcantiR. Fukuoka and D. Toundykov, Stabilization of the damped wave equation with Cauchy-Ventcel boundary conditions, J. Evol. Equ., 9 (2009), 143-169.  doi: 10.1007/s00028-009-0002-1.  Google Scholar

[4]

M. CavalcantiA. Khemmoudj and M. Medjden, Uniform stabilization of the damped Cauchy-Ventcel problem with variable coefficients and dynamic boundary conditions, J. Math. Anal. Appl., 328 (2007), 900-930.  doi: 10.1016/j.jmaa.2006.05.070.  Google Scholar

[5]

C. Fulton, Two-point boundary value problems with eigenvalue parameter contained in the boundary conditions, Proc. Roy. Soc. Edinburgh, 77A (1977), 293-308.  doi: 10.1017/S030821050002521X.  Google Scholar

[6]

C. Fulton, Singular eigenvalue problems with eigenvalue parameter contained in the boundary conditions, Proc. Roy. Soc. Edinburgh, 87A (1980), 1-34.  doi: 10.1017/S0308210500012312.  Google Scholar

[7]

C. Gal and L. Tebou, Carleman inequalities for wave equations with oscillatory boundary conditions and application, SIAM J. Control Optim., 55 (2017), 324-364.  doi: 10.1137/15M1032211.  Google Scholar

[8]

P. Grisvard, Elliptic Problems in Nonsmooth Domains, Pitman, London, 1985.  Google Scholar

[9]

A. E. Ingham, Some trigonometrical inequalities with applications in the theory of series, Math. Z., 41 (1936), 367-379.  doi: 10.1007/BF01180426.  Google Scholar

[10]

V. Komornik, Exact Controllability and Stabilization. The Multiplier Method, Masson, Paris, and John Wiley & Sons, Chichester, 1994.  Google Scholar

[11]

V. Komornik and P. Loreti, Fourier Series in Control Theory, Springer-Verlag, New York, 2005.  Google Scholar

[12]

V. Komornik and P. Loreti, Observability of rectangular membranes and plates on small sets, EECT., 3 (2014), 287-304.  doi: 10.3934/eect.2014.3.287.  Google Scholar

[13]

V. Komornik and B. Miara, Cross-like internal observability of ractangular membranes, EECT., 3 (2014), 135-146.  doi: 10.3934/eect.2014.3.135.  Google Scholar

[14]

V. Komornik and P. Loreti, Observability of square membranes by Fourier series methods, Bulletin of the south Ural state university, Series "Mathematical modelling, programming and computer software", 8 (2015), 127-140.  doi: 10.14529/mmp150308.  Google Scholar

[15]

K. Lemrabet, Problème aux limites de Ventcel dans un domaine non régulier, CRAS Paris, 300 (1985), 531-534.   Google Scholar

[16]

K. Lemrabet, Etude de Divers Problèmes Aux Limites de Ventcel D'origine Physique ou Mécanique dans des Domaines non Réguliers, Ph.D thesis, USTHB, Algiers, 1987. Google Scholar

[17]

K. Lemrabet and D. Teniou, Un problème d'évolution de type Ventcel, Maghreb Math. Rev., 1 (1992), 15-29.   Google Scholar

[18]

J.-L. Lions, Contrôlabilité Exacte Perturbation et Stabilisation De Systémes Distribués I, Masson, Paris, 1988.  Google Scholar

[19]

T. Masrour, The wave equation with dynamic Wentzell boundary condition in polygonal and polyhedral domains: Observation and exact controllability, International Journal of Partial Differential Equations and Applications, 2 (2014), 13-22.   Google Scholar

[20]

M. Mehrenberger, An Ingham type proof for the boundary observability of a N-d wave equation, C. R. Math. Acad. Sci. Paris, 347 (2009), 63-68.  doi: 10.1016/j.crma.2008.11.002.  Google Scholar

[21]

S. Nicaise and K. Laoubi, Polynomial stabilization of the wave equation with Ventcel's boundary conditions, Math. Nachr., 283 (2010), 1428-1438.  doi: 10.1002/mana.200710162.  Google Scholar

[22]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, New York, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[23]

M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups, Birkhauser Verlag, Basel, 2009. doi: 10.1007/978-3-7643-8994-9.  Google Scholar

[24]

J. Walter, Regular eigenvalue problems with eigenvalue parameter in the boundary conditions, Math. Z., 133 (1973), 301-312.  doi: 10.1007/BF01177870.  Google Scholar

[1]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[2]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[3]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[4]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[5]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[6]

Chao Xing, Jiaojiao Pan, Hong Luo. Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020275

[7]

Haixiang Yao, Ping Chen, Miao Zhang, Xun Li. Dynamic discrete-time portfolio selection for defined contribution pension funds with inflation risk. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020166

[8]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

[9]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[10]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

[11]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[12]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[13]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[14]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[15]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[16]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[17]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[18]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

[19]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[20]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

2019 Impact Factor: 0.953

Metrics

  • PDF downloads (220)
  • HTML views (646)
  • Cited by (0)

Other articles
by authors

[Back to Top]