In the present paper we derive the existence and uniqueness of the solution for the optimal control problem governed by the stochastic FitzHugh-Nagumo equation with recovery variable. Since the drift coefficient is characterized by a cubic non-linearity, standard techniques cannot be applied, instead we exploit the Ekeland's variational principle.
Citation: |
[1] |
S. Albeverio and L. Di Persio, Some stochastic dynamical models in neurobiology, Recent Developments Europena Communications in Mathematical and Theoretical Biology, 14 (2011), 44-53.
![]() |
[2] |
S. Albeverio, L. Di Persio and E. Mastrogiacomo, Small noise asymptotic expansions for stochastic PDE's, I. The case of a dissipative polynomially bounded non linearity, Tohoku Mathematical Journal, 63 (2011), 877-898.
doi: 10.2748/tmj/1325886292.![]() ![]() ![]() |
[3] |
S. Albeverio, L. Di Persio, E. Mastrogiacomo and B. Smii, A Class of Lévy driven SDEs and their explicit invariant measures, Potential Analysis, 45 (2016), 229-259.
doi: 10.1007/s11118-016-9544-3.![]() ![]() ![]() |
[4] |
V. Barbu, Nonlinear Differential Equations of Monotone Types in Banach Spaces, Springer Monographs in Mathematics. Springer, New York, 2010.
doi: 10.1007/978-1-4419-5542-5.![]() ![]() ![]() |
[5] |
V. Barbu, Analysis and control of nonlinear infinite-dimensional systems, Mathematics in Science and Engineering, 190. Academic Press, Inc., Boston, MA, 1993.
![]() ![]() |
[6] |
V. Barbu, F. Cordoni and L. Di Persio, Optimal control of stochastic FitzHugh-Nagumo equation, International Journal of Control, 34 (2016), 746-756.
doi: 10.1080/00207179.2015.1096023.![]() ![]() ![]() |
[7] |
V. Barbu and M. Iannelli, Optimal control of population dynamics, Journal of Optimization Theory and Applications, 102 (1999), 1-14.
doi: 10.1023/A:1021865709529.![]() ![]() ![]() |
[8] |
V. Barbu and T. Precupanu, Convexity and Optimization in Banach Spaces, Springer Science & Business Media, 2012.
doi: 10.1007/978-94-007-2247-7.![]() ![]() ![]() |
[9] |
V. Barbu and M. Rckner, On a random scaled porous media equation, Journal of Differential Equations, 251 (2011), 2494-2514.
doi: 10.1016/j.jde.2011.07.012.![]() ![]() ![]() |
[10] |
S. Bonaccorsi, C. Marinelli and G. Ziglio, Stochastic FitzHugh-Nagumo equations on networks with impulsive noise, Electron. J. Probab, 13 (2008), 1362-1379.
doi: 10.1214/EJP.v13-532.![]() ![]() ![]() |
[11] |
S. Bonaccorsi and E. Mastrogiacomo, Analysis of the stochastic FitzHugh-Nagumo system, Inf. Dim. Anal. Quantum Probab. Relat. Top., 11 (2008), 427-446.
doi: 10.1142/S0219025708003191.![]() ![]() ![]() |
[12] |
T. Breiten and K. Kunisch, Riccati-based feedback control of the monodomain equations with the Fitzhugh-Nagumo model, SIAM Journal on Control and Optimization, 52 (2014), 4057-4081.
doi: 10.1137/140964552.![]() ![]() ![]() |
[13] |
E. Casas, C. Ryll and F. Trltzsch, Sparse optimal control of the Schlgl and FitzHugh-Nagumo systems, Computational Methods in Applied Mathematics, 13 (2013), 415-442.
doi: 10.1515/cmam-2013-0016.![]() ![]() ![]() |
[14] |
F. Cordoni and L. Di Persio, Small noise asymptotic expansion for the infinite dimensional Van der Pol oscillator, International Journal of Mathematical Models and Method in Applied Sciences, 9 (2015).
![]() |
[15] |
F. Cordoni and L. Di Persio, Stochastic reaction-diffusion equations on networks with dynamic time-delayed boundary conditions, Journal of Mathematical Analysis and Applications, 451 (2017), 583-603.
doi: 10.1016/j.jmaa.2017.02.008.![]() ![]() ![]() |
[16] |
F. Cordoni and L. Di Persio, Gaussian estimates on networks with dynamic stochastic boundary conditions, Infinite Dimensional Analysis, Quantum Probability and Related Topics, 20 (2017), 1750001, 23pp.
doi: 10.1142/S0219025717500011.![]() ![]() ![]() |
[17] |
G. Da Prato, Kolmogorov Equations for Stochastic PDEs. Advanced Courses in Mathematics, CRM Barcelona. Birkhäuser Verlag, Basel, 2004.
doi: 10.1007/978-3-0348-7909-5.![]() ![]() ![]() |
[18] |
G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Vol. 152. Cambridge university press, 2014.
doi: 10.1017/CBO9781107295513.![]() ![]() ![]() |
[19] |
G. Da Prato and J. Zabczyk, Second Order Partial Differential Equations in Hilbert Spaces, London Mathematical Society Lecture Note Series, 293. Cambridge University Press, Cambridge, 2002.
doi: 10.1017/CBO9780511543210.![]() ![]() ![]() |
[20] |
G. Da Prato and J. Zabczyk, Ergodicity for Infinite-Dimensional Systems, London Mathematical Society Lecture Note Series, 229. Cambridge University Press, Cambridge, 1996.
doi: 10.1017/CBO9780511662829.![]() ![]() ![]() |
[21] |
L. Di Persio and G. Ziglio, Gaussian estimates on networks with applications to optimal control, Netw. Heterog. Media, 6 (2011), 279-296.
doi: 10.3934/nhm.2011.6.279.![]() ![]() ![]() |
[22] |
H. W. Diehl, The theory of boundary critical phenomena, International Journal of Modern Physics B, 11 (1997), 3503-3523.
doi: 10.1142/S0217979297001751.![]() ![]() |
[23] |
I. Ekeland, On the variational principle, Journal of Mathematical Analysis and Applications, 47 (1974), 324-353.
doi: 10.1016/0022-247X(74)90025-0.![]() ![]() ![]() |
[24] |
R. Fitz Hugh, Impulses and physiological states in theoretical models of nerve membrane, Biophysical Journal, 1 (1961), 445-466.
![]() |
[25] |
M. Fuhrman and C. Orrieri, Stochastic maximum principle for optimal control of a class of nonlinear SPDEs with dissipative drift, SIAM Journal on Control and Optimization, 54 (2016), 341-371.
doi: 10.1137/15M1012888.![]() ![]() ![]() |
[26] |
M. Fuhrman and G. Tessitore, Nonlinear Kolmogorov equations in infinite dimensional spaces: the backward stochastic differential equations approach and applications to optimal control, Annals of Probability, 30 (2002), 1397-1465.
doi: 10.1214/aop/1029867132.![]() ![]() ![]() |
[27] |
A. L. Hodgkin and A. F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve, The Journal of Physiology, 117 (1952), 500-544.
![]() |
[28] |
K. Kunisch and M. Wagner, Optimal control of the bidomain system (Ⅲ): Existence of minimizers and first-order optimality conditions, ESAIM: Mathematical Modelling and Numerical Analysis, 47 (2013), 1077-1106.
doi: 10.1051/m2an/2012058.![]() ![]() ![]() |
[29] |
C. Marinelli, L. Di Persio and G. Ziglio, Approximation and convergence of solutions to semilinear stochastic evolution equations with jumps, Journal of Functional Analysis, 264 (2013), 2784-2816.
doi: 10.1016/j.jfa.2013.02.020.![]() ![]() ![]() |
[30] |
J. Nagumo, S. Arimoto and S. Yoshizawa, An active pulse transmission line simulating nerve axon, Proceedings of the Institute of Radio Engineers, 50 (1962), 2061-2070.
doi: 10.1109/JRPROC.1962.288235.![]() ![]() |
[31] |
S. Pitchaiah and A. Armaou, Output Feedback Control of the FitzHugh-Nagumo Equation Using Adaptive Model Reduction, Proceedings of the 49th IEEE Conference on Decision and Control, Atlanta, GA, 2010.
doi: 10.1109/CDC.2010.5717497.![]() ![]() |
[32] |
G. Tessitore, Existence, uniqueness and space regularity of the adapted solutions of a backward SPDE, Stochastic Analysis and Applications, 14 (1996), 461-486.
doi: 10.1080/07362999608809451.![]() ![]() ![]() |
[33] |
H. C. Tuckwell, Random perturbations of the reduced Fitzhugh-Nagumo equation, Physica Scripta, 46 (1992), 481-484.
doi: 10.1088/0031-8949/46/6/001.![]() ![]() ![]() |