• Previous Article
    Existence and stabilization of a Kirchhoff moving string with a delay in the boundary or in the internal feedback
  • EECT Home
  • This Issue
  • Next Article
    Optimal control for the stochastic FitzHugh-Nagumo model with recovery variable
December  2018, 7(4): 587-597. doi: 10.3934/eect.2018028

Some partially observed multi-agent linear exponential quadratic stochastic differential games

Mathematics Department, Snow Hall, 1460 Jayhawk Blvd, Lawrence, KS 66045, USA

Received  January 2018 Revised  August 2018 Published  September 2018

Fund Project: The author was supported by NSF grant DMS 1411412, AFOSR grant FA9550-17-1-0073, and ARO grant W911NF-14-10390.

Some multi-agent stochastic differential games described by a stochastic linear system driven by a Brownian motion and having an exponential quadratic payoff for the agents are formulated and solved. The agents have either complete observations or partial observations of the system state. The agents act independently of one another and the explicit optimal feedback control strategies form a Nash equilibrium. In the partially observed problem the observations are the same for all agents which occurs in broadcast situations. The optimal control strategies and optimal payoffs are given explicitly. The method of solution for both problems does not require solving either Hamilton-Jacobi-Isaacs equations or backward stochastic differential equations.

Citation: Tyrone E. Duncan. Some partially observed multi-agent linear exponential quadratic stochastic differential games. Evolution Equations and Control Theory, 2018, 7 (4) : 587-597. doi: 10.3934/eect.2018028
References:
[1]

M. Bardi and F. S. Priuli, Linear-quadratic n-person and mean-field games with ergodic cost, SIAM J. Control Optim., 52 (2014), 3022-3052.  doi: 10.1137/140951795.

[2]

T. Basar and P. Bernhard, H-Optimal Control and Related Minimax Design Problems, Birkhauser, Boston, 1995. doi: 10.1007/978-0-8176-4757-5.

[3]

T. Basar and G. Olsder, Dynamic Noncooperative Game Theory, SIAM, 2nd Ed. 1999.

[4]

A. Bensoussan and J. H. van Schuppen, Optimal control of partially observable stochastic systems with an exponential-of-integral performance index, SIAM J. Control Optim., 23 (1995), 599-613.  doi: 10.1137/0323038.

[5]

R. Buckdahn and J. Li, Stochastic differential games and viscosity solutions of Hamilton-Jacobi-Bellman-Isaacs equations, SIAM J. Control Optim., 47 (2008), 444-475.  doi: 10.1137/060671954.

[6]

T. E. Duncan, Evaluation of likelihood functions, Information and Control, 13 (1968), 62-74.  doi: 10.1016/S0019-9958(68)90795-X.

[7]

T. E. Duncan, Linear-exponential-quadratic Gaussian control, IEEE Trans. Autom. Control, 58 (2013), 2910-2911.  doi: 10.1109/TAC.2013.2257610.

[8]

T. E. Duncan, Some linear-quadratic stochastic differential games for equations in a Hilbert space with fractional Brownian motions, Discrete Cont. Dyn. Systems Ser. A, 35 (2015), 5435-5445.  doi: 10.3934/dcds.2015.35.5435.

[9]

T. E. Duncan, Linear exponential quadratic stochastic differential games, IEEE Trans. Autom. Control, 61 (2016), 2550-2552.  doi: 10.1109/TAC.2015.2510983.

[10]

T. E. Duncan and B. Pasik-Duncan, A solvable stochastic differential game in the two-sphere, Proc. 52nd IEEE Conf. Decision and Control, 7833–7837, Firenze, 2013.

[11]

T. E. Duncan and B. Pasik-Duncan, Some results on optimal control for a partially observed linear stochastic system with an exponential quadratic cost, Proc. IFAC World Congress, Cape Town, 47 (2014), 8695-8698. doi: 10.3182/20140824-6-ZA-1003.00522.

[12]

R. J. Elliott, L. Aggoun and J. B. Moore, Hidden Markov Models, Springer, 1995.

[13]

W. H. Fleming and D. Hernandez-Hernandez, On the value of stochastic differential games, Commun. Stoch. Anal., 5 (2011), 341-351. 

[14]

W. H. Fleming and P. E. Souganidis, On the existence of value functions of two player, zero sum stochastic differential games, Indiana Math. J., 38 (1989), 293-314.  doi: 10.1512/iumj.1989.38.38015.

[15]

S. Hamadene, J. P. Lepeltier and S. Peng, BSDEs with continuous coefficients and stochastic differential games, Backward Stochastic Differential Equations (N. El Karoui et al., eds.), Pitman Res. Notes Math, 364 (1997), 115-128.

[16]

R. Isaacs, Differential Games, J. Wiley, New York 1965.

[17]

D. H. Jacobson, Optimal stochastic linear systems with exponential performance criteria and their relation to deterministic differential games, IEEE Trans. Autom. Control, AC-18 (1973), 124-131. 

[18]

M. L. KleptsynaA. Le Breton and M. Viot, On the linear-exponential filtering problem for general Gaussian processes, SIAM J. control Optim., 47 (2008), 2886-2911.  doi: 10.1137/070705908.

[19]

J. B. Moore, R. J. Elliott and S. Dey, Risk sensitive generalizations of minimum variance estimation and control, J. Math. Syst., Estimation, Contr., (electronic), 7 (1997), 15 pp.

[20]

J. Nash, Non-cooperative games, Ann. Math., 54 (1951), 286-295.  doi: 10.2307/1969529.

[21]

J. L. SpeyerJ. Deyst and D. H. Jacobson, Optimization of stochastic linear systems with additive measurement and process noise using exponential performance criteria, IEEE Trans. Autom. Control, AC-19 (1974), 358-366. 

show all references

References:
[1]

M. Bardi and F. S. Priuli, Linear-quadratic n-person and mean-field games with ergodic cost, SIAM J. Control Optim., 52 (2014), 3022-3052.  doi: 10.1137/140951795.

[2]

T. Basar and P. Bernhard, H-Optimal Control and Related Minimax Design Problems, Birkhauser, Boston, 1995. doi: 10.1007/978-0-8176-4757-5.

[3]

T. Basar and G. Olsder, Dynamic Noncooperative Game Theory, SIAM, 2nd Ed. 1999.

[4]

A. Bensoussan and J. H. van Schuppen, Optimal control of partially observable stochastic systems with an exponential-of-integral performance index, SIAM J. Control Optim., 23 (1995), 599-613.  doi: 10.1137/0323038.

[5]

R. Buckdahn and J. Li, Stochastic differential games and viscosity solutions of Hamilton-Jacobi-Bellman-Isaacs equations, SIAM J. Control Optim., 47 (2008), 444-475.  doi: 10.1137/060671954.

[6]

T. E. Duncan, Evaluation of likelihood functions, Information and Control, 13 (1968), 62-74.  doi: 10.1016/S0019-9958(68)90795-X.

[7]

T. E. Duncan, Linear-exponential-quadratic Gaussian control, IEEE Trans. Autom. Control, 58 (2013), 2910-2911.  doi: 10.1109/TAC.2013.2257610.

[8]

T. E. Duncan, Some linear-quadratic stochastic differential games for equations in a Hilbert space with fractional Brownian motions, Discrete Cont. Dyn. Systems Ser. A, 35 (2015), 5435-5445.  doi: 10.3934/dcds.2015.35.5435.

[9]

T. E. Duncan, Linear exponential quadratic stochastic differential games, IEEE Trans. Autom. Control, 61 (2016), 2550-2552.  doi: 10.1109/TAC.2015.2510983.

[10]

T. E. Duncan and B. Pasik-Duncan, A solvable stochastic differential game in the two-sphere, Proc. 52nd IEEE Conf. Decision and Control, 7833–7837, Firenze, 2013.

[11]

T. E. Duncan and B. Pasik-Duncan, Some results on optimal control for a partially observed linear stochastic system with an exponential quadratic cost, Proc. IFAC World Congress, Cape Town, 47 (2014), 8695-8698. doi: 10.3182/20140824-6-ZA-1003.00522.

[12]

R. J. Elliott, L. Aggoun and J. B. Moore, Hidden Markov Models, Springer, 1995.

[13]

W. H. Fleming and D. Hernandez-Hernandez, On the value of stochastic differential games, Commun. Stoch. Anal., 5 (2011), 341-351. 

[14]

W. H. Fleming and P. E. Souganidis, On the existence of value functions of two player, zero sum stochastic differential games, Indiana Math. J., 38 (1989), 293-314.  doi: 10.1512/iumj.1989.38.38015.

[15]

S. Hamadene, J. P. Lepeltier and S. Peng, BSDEs with continuous coefficients and stochastic differential games, Backward Stochastic Differential Equations (N. El Karoui et al., eds.), Pitman Res. Notes Math, 364 (1997), 115-128.

[16]

R. Isaacs, Differential Games, J. Wiley, New York 1965.

[17]

D. H. Jacobson, Optimal stochastic linear systems with exponential performance criteria and their relation to deterministic differential games, IEEE Trans. Autom. Control, AC-18 (1973), 124-131. 

[18]

M. L. KleptsynaA. Le Breton and M. Viot, On the linear-exponential filtering problem for general Gaussian processes, SIAM J. control Optim., 47 (2008), 2886-2911.  doi: 10.1137/070705908.

[19]

J. B. Moore, R. J. Elliott and S. Dey, Risk sensitive generalizations of minimum variance estimation and control, J. Math. Syst., Estimation, Contr., (electronic), 7 (1997), 15 pp.

[20]

J. Nash, Non-cooperative games, Ann. Math., 54 (1951), 286-295.  doi: 10.2307/1969529.

[21]

J. L. SpeyerJ. Deyst and D. H. Jacobson, Optimization of stochastic linear systems with additive measurement and process noise using exponential performance criteria, IEEE Trans. Autom. Control, AC-19 (1974), 358-366. 

[1]

Beatris Adriana Escobedo-Trujillo, José Daniel López-Barrientos. Nonzero-sum stochastic differential games with additive structure and average payoffs. Journal of Dynamics and Games, 2014, 1 (4) : 555-578. doi: 10.3934/jdg.2014.1.555

[2]

Beatris Adriana Escobedo-Trujillo, Alejandro Alaffita-Hernández, Raquiel López-Martínez. Constrained stochastic differential games with additive structure: Average and discount payoffs. Journal of Dynamics and Games, 2018, 5 (2) : 109-141. doi: 10.3934/jdg.2018008

[3]

Beatris A. Escobedo-Trujillo. Discount-sensitive equilibria in zero-sum stochastic differential games. Journal of Dynamics and Games, 2016, 3 (1) : 25-50. doi: 10.3934/jdg.2016002

[4]

Jingzhen Liu, Ka-Fai Cedric Yiu. Optimal stochastic differential games with VaR constraints. Discrete and Continuous Dynamical Systems - B, 2013, 18 (7) : 1889-1907. doi: 10.3934/dcdsb.2013.18.1889

[5]

Alain Bensoussan, Jens Frehse, Christine Grün. Stochastic differential games with a varying number of players. Communications on Pure and Applied Analysis, 2014, 13 (5) : 1719-1736. doi: 10.3934/cpaa.2014.13.1719

[6]

Jiequn Han, Ruimeng Hu, Jihao Long. Convergence of deep fictitious play for stochastic differential games. Frontiers of Mathematical Finance, 2022, 1 (2) : 287-319. doi: 10.3934/fmf.2021011

[7]

Matthew Bourque, T. E. S. Raghavan. Policy improvement for perfect information additive reward and additive transition stochastic games with discounted and average payoffs. Journal of Dynamics and Games, 2014, 1 (3) : 347-361. doi: 10.3934/jdg.2014.1.347

[8]

Tyrone E. Duncan. Some linear-quadratic stochastic differential games for equations in Hilbert spaces with fractional Brownian motions. Discrete and Continuous Dynamical Systems, 2015, 35 (11) : 5435-5445. doi: 10.3934/dcds.2015.35.5435

[9]

Libin Mou, Jiongmin Yong. Two-person zero-sum linear quadratic stochastic differential games by a Hilbert space method. Journal of Industrial and Management Optimization, 2006, 2 (1) : 95-117. doi: 10.3934/jimo.2006.2.95

[10]

Jun Moon. Linear-quadratic mean-field type stackelberg differential games for stochastic jump-diffusion systems. Mathematical Control and Related Fields, 2022, 12 (2) : 371-404. doi: 10.3934/mcrf.2021026

[11]

Chandan Pal, Somnath Pradhan. Zero-sum games for pure jump processes with risk-sensitive discounted cost criteria. Journal of Dynamics and Games, 2022, 9 (1) : 13-25. doi: 10.3934/jdg.2021020

[12]

Alain Bensoussan, Shaokuan Chen, Suresh P. Sethi. Linear quadratic differential games with mixed leadership: The open-loop solution. Numerical Algebra, Control and Optimization, 2013, 3 (1) : 95-108. doi: 10.3934/naco.2013.3.95

[13]

John A. Morgan. Interception in differential pursuit/evasion games. Journal of Dynamics and Games, 2016, 3 (4) : 335-354. doi: 10.3934/jdg.2016018

[14]

Alain Bensoussan, Jens Frehse, Jens Vogelgesang. Systems of Bellman equations to stochastic differential games with non-compact coupling. Discrete and Continuous Dynamical Systems, 2010, 27 (4) : 1375-1389. doi: 10.3934/dcds.2010.27.1375

[15]

Qingmeng Wei, Zhiyong Yu. Time-inconsistent recursive zero-sum stochastic differential games. Mathematical Control and Related Fields, 2018, 8 (3&4) : 1051-1079. doi: 10.3934/mcrf.2018045

[16]

Ellina Grigorieva, Evgenii Khailov. Hierarchical differential games between manufacturer and retailer. Conference Publications, 2009, 2009 (Special) : 300-314. doi: 10.3934/proc.2009.2009.300

[17]

Leon Petrosyan, David Yeung. Shapley value for differential network games: Theory and application. Journal of Dynamics and Games, 2021, 8 (2) : 151-166. doi: 10.3934/jdg.2020021

[18]

Xiangxiang Huang, Xianping Guo, Jianping Peng. A probability criterion for zero-sum stochastic games. Journal of Dynamics and Games, 2017, 4 (4) : 369-383. doi: 10.3934/jdg.2017020

[19]

Mathias Staudigl, Srinivas Arigapudi, William H. Sandholm. Large deviations and Stochastic stability in Population Games. Journal of Dynamics and Games, 2021  doi: 10.3934/jdg.2021021

[20]

Samuel Drapeau, Peng Luo, Alexander Schied, Dewen Xiong. An FBSDE approach to market impact games with stochastic parameters. Probability, Uncertainty and Quantitative Risk, 2021, 6 (3) : 237-260. doi: 10.3934/puqr.2021012

2021 Impact Factor: 1.169

Metrics

  • PDF downloads (297)
  • HTML views (354)
  • Cited by (0)

Other articles
by authors

[Back to Top]