-
Previous Article
Existence and stabilization of a Kirchhoff moving string with a delay in the boundary or in the internal feedback
- EECT Home
- This Issue
-
Next Article
Optimal control for the stochastic FitzHugh-Nagumo model with recovery variable
Some partially observed multi-agent linear exponential quadratic stochastic differential games
Mathematics Department, Snow Hall, 1460 Jayhawk Blvd, Lawrence, KS 66045, USA |
Some multi-agent stochastic differential games described by a stochastic linear system driven by a Brownian motion and having an exponential quadratic payoff for the agents are formulated and solved. The agents have either complete observations or partial observations of the system state. The agents act independently of one another and the explicit optimal feedback control strategies form a Nash equilibrium. In the partially observed problem the observations are the same for all agents which occurs in broadcast situations. The optimal control strategies and optimal payoffs are given explicitly. The method of solution for both problems does not require solving either Hamilton-Jacobi-Isaacs equations or backward stochastic differential equations.
References:
[1] |
M. Bardi and F. S. Priuli,
Linear-quadratic n-person and mean-field games with ergodic cost, SIAM J. Control Optim., 52 (2014), 3022-3052.
doi: 10.1137/140951795. |
[2] |
T. Basar and P. Bernhard, H∞-Optimal Control and Related Minimax Design Problems, Birkhauser, Boston, 1995.
doi: 10.1007/978-0-8176-4757-5. |
[3] |
T. Basar and G. Olsder, Dynamic Noncooperative Game Theory, SIAM, 2nd Ed. 1999. |
[4] |
A. Bensoussan and J. H. van Schuppen,
Optimal control of partially observable stochastic systems with an exponential-of-integral performance index, SIAM J. Control Optim., 23 (1995), 599-613.
doi: 10.1137/0323038. |
[5] |
R. Buckdahn and J. Li,
Stochastic differential games and viscosity solutions of Hamilton-Jacobi-Bellman-Isaacs equations, SIAM J. Control Optim., 47 (2008), 444-475.
doi: 10.1137/060671954. |
[6] |
T. E. Duncan,
Evaluation of likelihood functions, Information and Control, 13 (1968), 62-74.
doi: 10.1016/S0019-9958(68)90795-X. |
[7] |
T. E. Duncan,
Linear-exponential-quadratic Gaussian control, IEEE Trans. Autom. Control, 58 (2013), 2910-2911.
doi: 10.1109/TAC.2013.2257610. |
[8] |
T. E. Duncan,
Some linear-quadratic stochastic differential games for equations in a Hilbert space with fractional Brownian motions, Discrete Cont. Dyn. Systems Ser. A, 35 (2015), 5435-5445.
doi: 10.3934/dcds.2015.35.5435. |
[9] |
T. E. Duncan,
Linear exponential quadratic stochastic differential games, IEEE Trans. Autom. Control, 61 (2016), 2550-2552.
doi: 10.1109/TAC.2015.2510983. |
[10] |
T. E. Duncan and B. Pasik-Duncan, A solvable stochastic differential game in the two-sphere, Proc. 52nd IEEE Conf. Decision and Control, 7833–7837, Firenze, 2013. Google Scholar |
[11] |
T. E. Duncan and B. Pasik-Duncan, Some results on optimal control for a partially observed linear stochastic system with an exponential quadratic cost, Proc. IFAC World Congress, Cape Town, 47 (2014), 8695-8698.
doi: 10.3182/20140824-6-ZA-1003.00522. |
[12] |
R. J. Elliott, L. Aggoun and J. B. Moore, Hidden Markov Models, Springer, 1995. |
[13] |
W. H. Fleming and D. Hernandez-Hernandez,
On the value of stochastic differential games, Commun. Stoch. Anal., 5 (2011), 341-351.
|
[14] |
W. H. Fleming and P. E. Souganidis,
On the existence of value functions of two player, zero sum stochastic differential games, Indiana Math. J., 38 (1989), 293-314.
doi: 10.1512/iumj.1989.38.38015. |
[15] |
S. Hamadene, J. P. Lepeltier and S. Peng, BSDEs with continuous coefficients and stochastic differential games, Backward Stochastic Differential Equations (N. El Karoui et al., eds.), Pitman Res. Notes Math, 364 (1997), 115-128. |
[16] |
R. Isaacs, Differential Games, J. Wiley, New York 1965. Google Scholar |
[17] |
D. H. Jacobson,
Optimal stochastic linear systems with exponential performance criteria and their relation to deterministic differential games, IEEE Trans. Autom. Control, AC-18 (1973), 124-131.
|
[18] |
M. L. Kleptsyna, A. Le Breton and M. Viot,
On the linear-exponential filtering problem for general Gaussian processes, SIAM J. control Optim., 47 (2008), 2886-2911.
doi: 10.1137/070705908. |
[19] |
J. B. Moore, R. J. Elliott and S. Dey, Risk sensitive generalizations of minimum variance estimation and control, J. Math. Syst., Estimation, Contr., (electronic), 7 (1997), 15 pp. |
[20] |
J. Nash,
Non-cooperative games, Ann. Math., 54 (1951), 286-295.
doi: 10.2307/1969529. |
[21] |
J. L. Speyer, J. Deyst and D. H. Jacobson,
Optimization of stochastic linear systems with additive measurement and process noise using exponential performance criteria, IEEE Trans. Autom. Control, AC-19 (1974), 358-366.
|
show all references
References:
[1] |
M. Bardi and F. S. Priuli,
Linear-quadratic n-person and mean-field games with ergodic cost, SIAM J. Control Optim., 52 (2014), 3022-3052.
doi: 10.1137/140951795. |
[2] |
T. Basar and P. Bernhard, H∞-Optimal Control and Related Minimax Design Problems, Birkhauser, Boston, 1995.
doi: 10.1007/978-0-8176-4757-5. |
[3] |
T. Basar and G. Olsder, Dynamic Noncooperative Game Theory, SIAM, 2nd Ed. 1999. |
[4] |
A. Bensoussan and J. H. van Schuppen,
Optimal control of partially observable stochastic systems with an exponential-of-integral performance index, SIAM J. Control Optim., 23 (1995), 599-613.
doi: 10.1137/0323038. |
[5] |
R. Buckdahn and J. Li,
Stochastic differential games and viscosity solutions of Hamilton-Jacobi-Bellman-Isaacs equations, SIAM J. Control Optim., 47 (2008), 444-475.
doi: 10.1137/060671954. |
[6] |
T. E. Duncan,
Evaluation of likelihood functions, Information and Control, 13 (1968), 62-74.
doi: 10.1016/S0019-9958(68)90795-X. |
[7] |
T. E. Duncan,
Linear-exponential-quadratic Gaussian control, IEEE Trans. Autom. Control, 58 (2013), 2910-2911.
doi: 10.1109/TAC.2013.2257610. |
[8] |
T. E. Duncan,
Some linear-quadratic stochastic differential games for equations in a Hilbert space with fractional Brownian motions, Discrete Cont. Dyn. Systems Ser. A, 35 (2015), 5435-5445.
doi: 10.3934/dcds.2015.35.5435. |
[9] |
T. E. Duncan,
Linear exponential quadratic stochastic differential games, IEEE Trans. Autom. Control, 61 (2016), 2550-2552.
doi: 10.1109/TAC.2015.2510983. |
[10] |
T. E. Duncan and B. Pasik-Duncan, A solvable stochastic differential game in the two-sphere, Proc. 52nd IEEE Conf. Decision and Control, 7833–7837, Firenze, 2013. Google Scholar |
[11] |
T. E. Duncan and B. Pasik-Duncan, Some results on optimal control for a partially observed linear stochastic system with an exponential quadratic cost, Proc. IFAC World Congress, Cape Town, 47 (2014), 8695-8698.
doi: 10.3182/20140824-6-ZA-1003.00522. |
[12] |
R. J. Elliott, L. Aggoun and J. B. Moore, Hidden Markov Models, Springer, 1995. |
[13] |
W. H. Fleming and D. Hernandez-Hernandez,
On the value of stochastic differential games, Commun. Stoch. Anal., 5 (2011), 341-351.
|
[14] |
W. H. Fleming and P. E. Souganidis,
On the existence of value functions of two player, zero sum stochastic differential games, Indiana Math. J., 38 (1989), 293-314.
doi: 10.1512/iumj.1989.38.38015. |
[15] |
S. Hamadene, J. P. Lepeltier and S. Peng, BSDEs with continuous coefficients and stochastic differential games, Backward Stochastic Differential Equations (N. El Karoui et al., eds.), Pitman Res. Notes Math, 364 (1997), 115-128. |
[16] |
R. Isaacs, Differential Games, J. Wiley, New York 1965. Google Scholar |
[17] |
D. H. Jacobson,
Optimal stochastic linear systems with exponential performance criteria and their relation to deterministic differential games, IEEE Trans. Autom. Control, AC-18 (1973), 124-131.
|
[18] |
M. L. Kleptsyna, A. Le Breton and M. Viot,
On the linear-exponential filtering problem for general Gaussian processes, SIAM J. control Optim., 47 (2008), 2886-2911.
doi: 10.1137/070705908. |
[19] |
J. B. Moore, R. J. Elliott and S. Dey, Risk sensitive generalizations of minimum variance estimation and control, J. Math. Syst., Estimation, Contr., (electronic), 7 (1997), 15 pp. |
[20] |
J. Nash,
Non-cooperative games, Ann. Math., 54 (1951), 286-295.
doi: 10.2307/1969529. |
[21] |
J. L. Speyer, J. Deyst and D. H. Jacobson,
Optimization of stochastic linear systems with additive measurement and process noise using exponential performance criteria, IEEE Trans. Autom. Control, AC-19 (1974), 358-366.
|
[1] |
Laura Aquilanti, Simone Cacace, Fabio Camilli, Raul De Maio. A Mean Field Games model for finite mixtures of Bernoulli and categorical distributions. Journal of Dynamics & Games, 2020 doi: 10.3934/jdg.2020033 |
[2] |
Wei-Chieh Chen, Bogdan Kazmierczak. Traveling waves in quadratic autocatalytic systems with complexing agent. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020364 |
[3] |
Ripeng Huang, Shaojian Qu, Xiaoguang Yang, Zhimin Liu. Multi-stage distributionally robust optimization with risk aversion. Journal of Industrial & Management Optimization, 2021, 17 (1) : 233-259. doi: 10.3934/jimo.2019109 |
[4] |
Hongguang Ma, Xiang Li. Multi-period hazardous waste collection planning with consideration of risk stability. Journal of Industrial & Management Optimization, 2021, 17 (1) : 393-408. doi: 10.3934/jimo.2019117 |
[5] |
Haodong Yu, Jie Sun. Robust stochastic optimization with convex risk measures: A discretized subgradient scheme. Journal of Industrial & Management Optimization, 2021, 17 (1) : 81-99. doi: 10.3934/jimo.2019100 |
[6] |
Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264 |
[7] |
Liang Huang, Jiao Chen. The boundedness of multi-linear and multi-parameter pseudo-differential operators. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020291 |
[8] |
Jingrui Sun, Hanxiao Wang. Mean-field stochastic linear-quadratic optimal control problems: Weak closed-loop solvability. Mathematical Control & Related Fields, 2021, 11 (1) : 47-71. doi: 10.3934/mcrf.2020026 |
[9] |
Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020317 |
[10] |
Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020047 |
[11] |
Bixiang Wang. Mean-square random invariant manifolds for stochastic differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1449-1468. doi: 10.3934/dcds.2020324 |
[12] |
Tetsuya Ishiwata, Young Chol Yang. Numerical and mathematical analysis of blow-up problems for a stochastic differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 909-918. doi: 10.3934/dcdss.2020391 |
[13] |
Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020468 |
[14] |
Qingfeng Zhu, Yufeng Shi. Nonzero-sum differential game of backward doubly stochastic systems with delay and applications. Mathematical Control & Related Fields, 2021, 11 (1) : 73-94. doi: 10.3934/mcrf.2020028 |
[15] |
Guangjun Shen, Xueying Wu, Xiuwei Yin. Stabilization of stochastic differential equations driven by G-Lévy process with discrete-time feedback control. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 755-774. doi: 10.3934/dcdsb.2020133 |
[16] |
Onur Şimşek, O. Erhun Kundakcioglu. Cost of fairness in agent scheduling for contact centers. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021001 |
[17] |
Editorial Office. Retraction: Xiao-Qian Jiang and Lun-Chuan Zhang, A pricing option approach based on backward stochastic differential equation theory. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 969-969. doi: 10.3934/dcdss.2019065 |
[18] |
Josselin Garnier, Knut Sølna. Enhanced Backscattering of a partially coherent field from an anisotropic random lossy medium. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1171-1195. doi: 10.3934/dcdsb.2020158 |
[19] |
Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020374 |
[20] |
Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020169 |
2019 Impact Factor: 0.953
Tools
Metrics
Other articles
by authors
[Back to Top]