• Previous Article
    Existence and stabilization of a Kirchhoff moving string with a delay in the boundary or in the internal feedback
  • EECT Home
  • This Issue
  • Next Article
    Optimal control for the stochastic FitzHugh-Nagumo model with recovery variable
December  2018, 7(4): 587-597. doi: 10.3934/eect.2018028

Some partially observed multi-agent linear exponential quadratic stochastic differential games

Mathematics Department, Snow Hall, 1460 Jayhawk Blvd, Lawrence, KS 66045, USA

Received  January 2018 Revised  August 2018 Published  September 2018

Fund Project: The author was supported by NSF grant DMS 1411412, AFOSR grant FA9550-17-1-0073, and ARO grant W911NF-14-10390.

Some multi-agent stochastic differential games described by a stochastic linear system driven by a Brownian motion and having an exponential quadratic payoff for the agents are formulated and solved. The agents have either complete observations or partial observations of the system state. The agents act independently of one another and the explicit optimal feedback control strategies form a Nash equilibrium. In the partially observed problem the observations are the same for all agents which occurs in broadcast situations. The optimal control strategies and optimal payoffs are given explicitly. The method of solution for both problems does not require solving either Hamilton-Jacobi-Isaacs equations or backward stochastic differential equations.

Citation: Tyrone E. Duncan. Some partially observed multi-agent linear exponential quadratic stochastic differential games. Evolution Equations & Control Theory, 2018, 7 (4) : 587-597. doi: 10.3934/eect.2018028
References:
[1]

M. Bardi and F. S. Priuli, Linear-quadratic n-person and mean-field games with ergodic cost, SIAM J. Control Optim., 52 (2014), 3022-3052.  doi: 10.1137/140951795.  Google Scholar

[2]

T. Basar and P. Bernhard, H-Optimal Control and Related Minimax Design Problems, Birkhauser, Boston, 1995. doi: 10.1007/978-0-8176-4757-5.  Google Scholar

[3]

T. Basar and G. Olsder, Dynamic Noncooperative Game Theory, SIAM, 2nd Ed. 1999.  Google Scholar

[4]

A. Bensoussan and J. H. van Schuppen, Optimal control of partially observable stochastic systems with an exponential-of-integral performance index, SIAM J. Control Optim., 23 (1995), 599-613.  doi: 10.1137/0323038.  Google Scholar

[5]

R. Buckdahn and J. Li, Stochastic differential games and viscosity solutions of Hamilton-Jacobi-Bellman-Isaacs equations, SIAM J. Control Optim., 47 (2008), 444-475.  doi: 10.1137/060671954.  Google Scholar

[6]

T. E. Duncan, Evaluation of likelihood functions, Information and Control, 13 (1968), 62-74.  doi: 10.1016/S0019-9958(68)90795-X.  Google Scholar

[7]

T. E. Duncan, Linear-exponential-quadratic Gaussian control, IEEE Trans. Autom. Control, 58 (2013), 2910-2911.  doi: 10.1109/TAC.2013.2257610.  Google Scholar

[8]

T. E. Duncan, Some linear-quadratic stochastic differential games for equations in a Hilbert space with fractional Brownian motions, Discrete Cont. Dyn. Systems Ser. A, 35 (2015), 5435-5445.  doi: 10.3934/dcds.2015.35.5435.  Google Scholar

[9]

T. E. Duncan, Linear exponential quadratic stochastic differential games, IEEE Trans. Autom. Control, 61 (2016), 2550-2552.  doi: 10.1109/TAC.2015.2510983.  Google Scholar

[10]

T. E. Duncan and B. Pasik-Duncan, A solvable stochastic differential game in the two-sphere, Proc. 52nd IEEE Conf. Decision and Control, 7833–7837, Firenze, 2013. Google Scholar

[11]

T. E. Duncan and B. Pasik-Duncan, Some results on optimal control for a partially observed linear stochastic system with an exponential quadratic cost, Proc. IFAC World Congress, Cape Town, 47 (2014), 8695-8698. doi: 10.3182/20140824-6-ZA-1003.00522.  Google Scholar

[12]

R. J. Elliott, L. Aggoun and J. B. Moore, Hidden Markov Models, Springer, 1995.  Google Scholar

[13]

W. H. Fleming and D. Hernandez-Hernandez, On the value of stochastic differential games, Commun. Stoch. Anal., 5 (2011), 341-351.   Google Scholar

[14]

W. H. Fleming and P. E. Souganidis, On the existence of value functions of two player, zero sum stochastic differential games, Indiana Math. J., 38 (1989), 293-314.  doi: 10.1512/iumj.1989.38.38015.  Google Scholar

[15]

S. Hamadene, J. P. Lepeltier and S. Peng, BSDEs with continuous coefficients and stochastic differential games, Backward Stochastic Differential Equations (N. El Karoui et al., eds.), Pitman Res. Notes Math, 364 (1997), 115-128.  Google Scholar

[16]

R. Isaacs, Differential Games, J. Wiley, New York 1965. Google Scholar

[17]

D. H. Jacobson, Optimal stochastic linear systems with exponential performance criteria and their relation to deterministic differential games, IEEE Trans. Autom. Control, AC-18 (1973), 124-131.   Google Scholar

[18]

M. L. KleptsynaA. Le Breton and M. Viot, On the linear-exponential filtering problem for general Gaussian processes, SIAM J. control Optim., 47 (2008), 2886-2911.  doi: 10.1137/070705908.  Google Scholar

[19]

J. B. Moore, R. J. Elliott and S. Dey, Risk sensitive generalizations of minimum variance estimation and control, J. Math. Syst., Estimation, Contr., (electronic), 7 (1997), 15 pp.  Google Scholar

[20]

J. Nash, Non-cooperative games, Ann. Math., 54 (1951), 286-295.  doi: 10.2307/1969529.  Google Scholar

[21]

J. L. SpeyerJ. Deyst and D. H. Jacobson, Optimization of stochastic linear systems with additive measurement and process noise using exponential performance criteria, IEEE Trans. Autom. Control, AC-19 (1974), 358-366.   Google Scholar

show all references

References:
[1]

M. Bardi and F. S. Priuli, Linear-quadratic n-person and mean-field games with ergodic cost, SIAM J. Control Optim., 52 (2014), 3022-3052.  doi: 10.1137/140951795.  Google Scholar

[2]

T. Basar and P. Bernhard, H-Optimal Control and Related Minimax Design Problems, Birkhauser, Boston, 1995. doi: 10.1007/978-0-8176-4757-5.  Google Scholar

[3]

T. Basar and G. Olsder, Dynamic Noncooperative Game Theory, SIAM, 2nd Ed. 1999.  Google Scholar

[4]

A. Bensoussan and J. H. van Schuppen, Optimal control of partially observable stochastic systems with an exponential-of-integral performance index, SIAM J. Control Optim., 23 (1995), 599-613.  doi: 10.1137/0323038.  Google Scholar

[5]

R. Buckdahn and J. Li, Stochastic differential games and viscosity solutions of Hamilton-Jacobi-Bellman-Isaacs equations, SIAM J. Control Optim., 47 (2008), 444-475.  doi: 10.1137/060671954.  Google Scholar

[6]

T. E. Duncan, Evaluation of likelihood functions, Information and Control, 13 (1968), 62-74.  doi: 10.1016/S0019-9958(68)90795-X.  Google Scholar

[7]

T. E. Duncan, Linear-exponential-quadratic Gaussian control, IEEE Trans. Autom. Control, 58 (2013), 2910-2911.  doi: 10.1109/TAC.2013.2257610.  Google Scholar

[8]

T. E. Duncan, Some linear-quadratic stochastic differential games for equations in a Hilbert space with fractional Brownian motions, Discrete Cont. Dyn. Systems Ser. A, 35 (2015), 5435-5445.  doi: 10.3934/dcds.2015.35.5435.  Google Scholar

[9]

T. E. Duncan, Linear exponential quadratic stochastic differential games, IEEE Trans. Autom. Control, 61 (2016), 2550-2552.  doi: 10.1109/TAC.2015.2510983.  Google Scholar

[10]

T. E. Duncan and B. Pasik-Duncan, A solvable stochastic differential game in the two-sphere, Proc. 52nd IEEE Conf. Decision and Control, 7833–7837, Firenze, 2013. Google Scholar

[11]

T. E. Duncan and B. Pasik-Duncan, Some results on optimal control for a partially observed linear stochastic system with an exponential quadratic cost, Proc. IFAC World Congress, Cape Town, 47 (2014), 8695-8698. doi: 10.3182/20140824-6-ZA-1003.00522.  Google Scholar

[12]

R. J. Elliott, L. Aggoun and J. B. Moore, Hidden Markov Models, Springer, 1995.  Google Scholar

[13]

W. H. Fleming and D. Hernandez-Hernandez, On the value of stochastic differential games, Commun. Stoch. Anal., 5 (2011), 341-351.   Google Scholar

[14]

W. H. Fleming and P. E. Souganidis, On the existence of value functions of two player, zero sum stochastic differential games, Indiana Math. J., 38 (1989), 293-314.  doi: 10.1512/iumj.1989.38.38015.  Google Scholar

[15]

S. Hamadene, J. P. Lepeltier and S. Peng, BSDEs with continuous coefficients and stochastic differential games, Backward Stochastic Differential Equations (N. El Karoui et al., eds.), Pitman Res. Notes Math, 364 (1997), 115-128.  Google Scholar

[16]

R. Isaacs, Differential Games, J. Wiley, New York 1965. Google Scholar

[17]

D. H. Jacobson, Optimal stochastic linear systems with exponential performance criteria and their relation to deterministic differential games, IEEE Trans. Autom. Control, AC-18 (1973), 124-131.   Google Scholar

[18]

M. L. KleptsynaA. Le Breton and M. Viot, On the linear-exponential filtering problem for general Gaussian processes, SIAM J. control Optim., 47 (2008), 2886-2911.  doi: 10.1137/070705908.  Google Scholar

[19]

J. B. Moore, R. J. Elliott and S. Dey, Risk sensitive generalizations of minimum variance estimation and control, J. Math. Syst., Estimation, Contr., (electronic), 7 (1997), 15 pp.  Google Scholar

[20]

J. Nash, Non-cooperative games, Ann. Math., 54 (1951), 286-295.  doi: 10.2307/1969529.  Google Scholar

[21]

J. L. SpeyerJ. Deyst and D. H. Jacobson, Optimization of stochastic linear systems with additive measurement and process noise using exponential performance criteria, IEEE Trans. Autom. Control, AC-19 (1974), 358-366.   Google Scholar

[1]

Laura Aquilanti, Simone Cacace, Fabio Camilli, Raul De Maio. A Mean Field Games model for finite mixtures of Bernoulli and categorical distributions. Journal of Dynamics & Games, 2020  doi: 10.3934/jdg.2020033

[2]

Wei-Chieh Chen, Bogdan Kazmierczak. Traveling waves in quadratic autocatalytic systems with complexing agent. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020364

[3]

Ripeng Huang, Shaojian Qu, Xiaoguang Yang, Zhimin Liu. Multi-stage distributionally robust optimization with risk aversion. Journal of Industrial & Management Optimization, 2021, 17 (1) : 233-259. doi: 10.3934/jimo.2019109

[4]

Hongguang Ma, Xiang Li. Multi-period hazardous waste collection planning with consideration of risk stability. Journal of Industrial & Management Optimization, 2021, 17 (1) : 393-408. doi: 10.3934/jimo.2019117

[5]

Haodong Yu, Jie Sun. Robust stochastic optimization with convex risk measures: A discretized subgradient scheme. Journal of Industrial & Management Optimization, 2021, 17 (1) : 81-99. doi: 10.3934/jimo.2019100

[6]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[7]

Liang Huang, Jiao Chen. The boundedness of multi-linear and multi-parameter pseudo-differential operators. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020291

[8]

Jingrui Sun, Hanxiao Wang. Mean-field stochastic linear-quadratic optimal control problems: Weak closed-loop solvability. Mathematical Control & Related Fields, 2021, 11 (1) : 47-71. doi: 10.3934/mcrf.2020026

[9]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[10]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[11]

Bixiang Wang. Mean-square random invariant manifolds for stochastic differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1449-1468. doi: 10.3934/dcds.2020324

[12]

Tetsuya Ishiwata, Young Chol Yang. Numerical and mathematical analysis of blow-up problems for a stochastic differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 909-918. doi: 10.3934/dcdss.2020391

[13]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[14]

Qingfeng Zhu, Yufeng Shi. Nonzero-sum differential game of backward doubly stochastic systems with delay and applications. Mathematical Control & Related Fields, 2021, 11 (1) : 73-94. doi: 10.3934/mcrf.2020028

[15]

Guangjun Shen, Xueying Wu, Xiuwei Yin. Stabilization of stochastic differential equations driven by G-Lévy process with discrete-time feedback control. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 755-774. doi: 10.3934/dcdsb.2020133

[16]

Onur Şimşek, O. Erhun Kundakcioglu. Cost of fairness in agent scheduling for contact centers. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021001

[17]

Editorial Office. Retraction: Xiao-Qian Jiang and Lun-Chuan Zhang, A pricing option approach based on backward stochastic differential equation theory. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 969-969. doi: 10.3934/dcdss.2019065

[18]

Josselin Garnier, Knut Sølna. Enhanced Backscattering of a partially coherent field from an anisotropic random lossy medium. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1171-1195. doi: 10.3934/dcdsb.2020158

[19]

Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020374

[20]

Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020169

2019 Impact Factor: 0.953

Metrics

  • PDF downloads (156)
  • HTML views (348)
  • Cited by (0)

Other articles
by authors

[Back to Top]