• Previous Article
    Backward controllability of pullback trajectory attractors with applications to multi-valued Jeffreys-Oldroyd equations
  • EECT Home
  • This Issue
  • Next Article
    Some partially observed multi-agent linear exponential quadratic stochastic differential games
December  2018, 7(4): 599-616. doi: 10.3934/eect.2018029

Existence and stabilization of a Kirchhoff moving string with a delay in the boundary or in the internal feedback

1. 

Faculé des sciences et de la technologie université Djilali Bounaama, Route Theniet El Had, Soufay 44225 Khemis Miliana, Algeria

2. 

Department of Mathematics and Statistics, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia

* Corresponding author: Abdelkarim Kelleche

Received  June 2017 Revised  August 2018 Published  September 2018

Fund Project: The second author is supported by King Fahd University of Petroleum and Minerals through the Project no.: IN151015.

In this paper, we study the effect of an internal or boundary time-delay on the stabilization of a moving string. The models adopted here are nonlinear and of "Kirchhoff" type. The well-posedness of the systems is proven by means of the Faedo-Galerkin method. In both cases, we prove that the solution of the system approaches the equilibrium in an exponential manner in the energy norm. To this end we request that the delayed term be dominated by the damping term. This is established through the multiplier technique.

Citation: Abdelkarim Kelleche, Nasser-Eddine Tatar. Existence and stabilization of a Kirchhoff moving string with a delay in the boundary or in the internal feedback. Evolution Equations & Control Theory, 2018, 7 (4) : 599-616. doi: 10.3934/eect.2018029
References:
[1]

L. Q Chen and W.-J. Zhao, The energetics and the stability of axially moving Kirchhoff strings (L), . Acoust. Soc. Am., 117 (2005), 55-88.  doi: 10.1121/1.1810310.  Google Scholar

[2]

J. Y. ChoiK. S. Hong and K. J. Yang, Exponential Stabilization of an Axially Moving Tensioned Strip by Passive Damping and Boundary, J. Vib. Control, 10 (2004), 661-682.  doi: 10.1177/1077546304038103.  Google Scholar

[3]

H. R. Clark, Elastic membrane equation in bounded and unbounded domains, EJQTDE, 1 (2002), 21 pp.  Google Scholar

[4]

R. DatkoJ. Lagness and M. P. Poilis, An example on the effect of time delays in boundary feedback stabilization of wave equations, SIAM J. Control Optim., 24 (1986), 152-156.  doi: 10.1137/0324007.  Google Scholar

[5]

R. F. Fung and C. C. Tseng, Boundary control of an axially moving string via Lyapunov method, J. Dyn. Syst. Meas. Control, 121 (1999), 105-110.  doi: 10.1115/1.2802425.  Google Scholar

[6]

F. R. FungJ. W. Wu and S. L. Wu, Stabilization of an Axially Moving String by Nonlinear Boundary Feedback, ASME J. Dyn. Syst. Meas. Control, 121 (1999), 117-121.  doi: 10.1115/1.2802428.  Google Scholar

[7]

F. R. FungJ. W. Wu and S. L. Wu, Boundary control of the axially moving Kirchhoff string, Automatica, 34 (1998), 1273-1277.   Google Scholar

[8]

S. M. R.F. FungJ. W. Wu and S. L. Wu, Exponential stabilization of an axially moving string by linear boundary feedback, Automatica, 35 (1999), 177-181.  doi: 10.1016/S0005-1098(98)00173-3.  Google Scholar

[9]

S. Gerbi and B. Said-Houari, Existence and exponential stability of a damped wave equation with dynamic boundary conditions and a delay term, Appl. Math. and Comp., 218 (2012), 11900-11910.  doi: 10.1016/j.amc.2012.05.055.  Google Scholar

[10]

A. KellecheN.-e. Tatar and A. Khemmoudj, Uniform stabilization of an axially moving Kirchhoff string by a boundary control of memory type, J. Dyn. Control Syst., 23 (2017), 237-247.  doi: 10.1007/s10883-016-9310-2.  Google Scholar

[11]

A. Kelleche and N.-e. Tatar, Control of an axially moving viscoelastic Kirchhoff string, Applicable Analysis, 97 (2018), 592-609.  doi: 10.1080/00036811.2016.1277708.  Google Scholar

[12]

D. KimY. H. KangJ. B. LeeG. R. Ko and I. H. Jung, Stabilization of a non-linear Kirchhoff equation by boundary feedback control, J. Eng. Math., 77 (2012), 197-209.  doi: 10.1007/s10665-012-9547-z.  Google Scholar

[13]

I. LasieckaR. Triggiani and P. F. Yao, Inverse/observability estimates for second-order hyperbolic equations with variable coefficients, J. Math. Anal. Appl., 235 (1999), 13-57.  doi: 10.1006/jmaa.1999.6348.  Google Scholar

[14]

J.-L. Lions, Quelques Méthodes de Résolution Des Problèmes Aux Limites Non Linéaires, Dunod, 1969.  Google Scholar

[15]

J.-L. Lions, Exact controllability, stabilization and perturbations for distributed parameter system, SIAM. Rev., 30 (1988), 1-68.  doi: 10.1137/1030001.  Google Scholar

[16]

S. Nicaise and C. Pignotti, Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks, SIAM J. Control Optim., 45 (2006), 1561-1585.  doi: 10.1137/060648891.  Google Scholar

[17]

S. Nicaise and C. Pignotti, Interior feedback stabilization of wave equations with time dependent delay, E. J. Diff. Equ, 41 (2011), 1-20.   Google Scholar

[18]

S. NicaiseJ. Valein and E. Fridman, Stabilization of the heat and the wave equations with boundary time-varying delays, DCDS-S, 2 (2009), 559-581.  doi: 10.3934/dcdss.2009.2.559.  Google Scholar

[19]

O. Reynolds, Papers on Mechanical and Physical Studies, vol.3, The sub-Mechanics of the universe, Cambridge University Press, 1903. Google Scholar

[20]

S. M. Shahruz, Boundary control of a nonlinear axially moving string, Inter. J. Robust. Nonl. Control, 10 (2000), 17-25.  doi: 10.1002/(SICI)1099-1239(200001)10:1<17::AID-RNC458>3.0.CO;2-9.  Google Scholar

[21]

S. M. Shahruz and D. A. Kurmaji, Vibration suppression of a non-linear axially moving string by boundary control, J. Sound. Vib., 201 (1997), 145-152.  doi: 10.1006/jsvi.1996.0754.  Google Scholar

[22]

M. A. Shubov, The Riesz basis property of the system of root vectors for the equation of a nonhomogeneous damped string: Transformation operators method, Methods Appl. Anal., 6 (1999), 571-591.  doi: 10.4310/MAA.1999.v6.n4.a9.  Google Scholar

[23]

G. Q. Xu and B. Z. Guo, Riesz basis property of evolution equations in Hilbert spaces and application to a coupled string equation, SIAM J. Control Optim., 42 (2003), 966-984.  doi: 10.1137/S0363012901400081.  Google Scholar

[24]

G. Q. XuS. P. Yung and L. K. Li, Stabilization of wave systems with input delay in the boundary control, ESAIM: COCV., 12 (2006), 770-785.  doi: 10.1051/cocv:2006021.  Google Scholar

[25]

K. J. YangK. S. Hong and F. Matsuno, The rate of change of an energy functional for axially moving continua, IFAC Proceedings Volumes, 38 (2005), 610-615.  doi: 10.3182/20050703-6-CZ-1902.00502.  Google Scholar

show all references

References:
[1]

L. Q Chen and W.-J. Zhao, The energetics and the stability of axially moving Kirchhoff strings (L), . Acoust. Soc. Am., 117 (2005), 55-88.  doi: 10.1121/1.1810310.  Google Scholar

[2]

J. Y. ChoiK. S. Hong and K. J. Yang, Exponential Stabilization of an Axially Moving Tensioned Strip by Passive Damping and Boundary, J. Vib. Control, 10 (2004), 661-682.  doi: 10.1177/1077546304038103.  Google Scholar

[3]

H. R. Clark, Elastic membrane equation in bounded and unbounded domains, EJQTDE, 1 (2002), 21 pp.  Google Scholar

[4]

R. DatkoJ. Lagness and M. P. Poilis, An example on the effect of time delays in boundary feedback stabilization of wave equations, SIAM J. Control Optim., 24 (1986), 152-156.  doi: 10.1137/0324007.  Google Scholar

[5]

R. F. Fung and C. C. Tseng, Boundary control of an axially moving string via Lyapunov method, J. Dyn. Syst. Meas. Control, 121 (1999), 105-110.  doi: 10.1115/1.2802425.  Google Scholar

[6]

F. R. FungJ. W. Wu and S. L. Wu, Stabilization of an Axially Moving String by Nonlinear Boundary Feedback, ASME J. Dyn. Syst. Meas. Control, 121 (1999), 117-121.  doi: 10.1115/1.2802428.  Google Scholar

[7]

F. R. FungJ. W. Wu and S. L. Wu, Boundary control of the axially moving Kirchhoff string, Automatica, 34 (1998), 1273-1277.   Google Scholar

[8]

S. M. R.F. FungJ. W. Wu and S. L. Wu, Exponential stabilization of an axially moving string by linear boundary feedback, Automatica, 35 (1999), 177-181.  doi: 10.1016/S0005-1098(98)00173-3.  Google Scholar

[9]

S. Gerbi and B. Said-Houari, Existence and exponential stability of a damped wave equation with dynamic boundary conditions and a delay term, Appl. Math. and Comp., 218 (2012), 11900-11910.  doi: 10.1016/j.amc.2012.05.055.  Google Scholar

[10]

A. KellecheN.-e. Tatar and A. Khemmoudj, Uniform stabilization of an axially moving Kirchhoff string by a boundary control of memory type, J. Dyn. Control Syst., 23 (2017), 237-247.  doi: 10.1007/s10883-016-9310-2.  Google Scholar

[11]

A. Kelleche and N.-e. Tatar, Control of an axially moving viscoelastic Kirchhoff string, Applicable Analysis, 97 (2018), 592-609.  doi: 10.1080/00036811.2016.1277708.  Google Scholar

[12]

D. KimY. H. KangJ. B. LeeG. R. Ko and I. H. Jung, Stabilization of a non-linear Kirchhoff equation by boundary feedback control, J. Eng. Math., 77 (2012), 197-209.  doi: 10.1007/s10665-012-9547-z.  Google Scholar

[13]

I. LasieckaR. Triggiani and P. F. Yao, Inverse/observability estimates for second-order hyperbolic equations with variable coefficients, J. Math. Anal. Appl., 235 (1999), 13-57.  doi: 10.1006/jmaa.1999.6348.  Google Scholar

[14]

J.-L. Lions, Quelques Méthodes de Résolution Des Problèmes Aux Limites Non Linéaires, Dunod, 1969.  Google Scholar

[15]

J.-L. Lions, Exact controllability, stabilization and perturbations for distributed parameter system, SIAM. Rev., 30 (1988), 1-68.  doi: 10.1137/1030001.  Google Scholar

[16]

S. Nicaise and C. Pignotti, Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks, SIAM J. Control Optim., 45 (2006), 1561-1585.  doi: 10.1137/060648891.  Google Scholar

[17]

S. Nicaise and C. Pignotti, Interior feedback stabilization of wave equations with time dependent delay, E. J. Diff. Equ, 41 (2011), 1-20.   Google Scholar

[18]

S. NicaiseJ. Valein and E. Fridman, Stabilization of the heat and the wave equations with boundary time-varying delays, DCDS-S, 2 (2009), 559-581.  doi: 10.3934/dcdss.2009.2.559.  Google Scholar

[19]

O. Reynolds, Papers on Mechanical and Physical Studies, vol.3, The sub-Mechanics of the universe, Cambridge University Press, 1903. Google Scholar

[20]

S. M. Shahruz, Boundary control of a nonlinear axially moving string, Inter. J. Robust. Nonl. Control, 10 (2000), 17-25.  doi: 10.1002/(SICI)1099-1239(200001)10:1<17::AID-RNC458>3.0.CO;2-9.  Google Scholar

[21]

S. M. Shahruz and D. A. Kurmaji, Vibration suppression of a non-linear axially moving string by boundary control, J. Sound. Vib., 201 (1997), 145-152.  doi: 10.1006/jsvi.1996.0754.  Google Scholar

[22]

M. A. Shubov, The Riesz basis property of the system of root vectors for the equation of a nonhomogeneous damped string: Transformation operators method, Methods Appl. Anal., 6 (1999), 571-591.  doi: 10.4310/MAA.1999.v6.n4.a9.  Google Scholar

[23]

G. Q. Xu and B. Z. Guo, Riesz basis property of evolution equations in Hilbert spaces and application to a coupled string equation, SIAM J. Control Optim., 42 (2003), 966-984.  doi: 10.1137/S0363012901400081.  Google Scholar

[24]

G. Q. XuS. P. Yung and L. K. Li, Stabilization of wave systems with input delay in the boundary control, ESAIM: COCV., 12 (2006), 770-785.  doi: 10.1051/cocv:2006021.  Google Scholar

[25]

K. J. YangK. S. Hong and F. Matsuno, The rate of change of an energy functional for axially moving continua, IFAC Proceedings Volumes, 38 (2005), 610-615.  doi: 10.3182/20050703-6-CZ-1902.00502.  Google Scholar

[1]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[2]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[3]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020107

[4]

Feifei Cheng, Ji Li. Geometric singular perturbation analysis of Degasperis-Procesi equation with distributed delay. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 967-985. doi: 10.3934/dcds.2020305

[5]

Stefan Ruschel, Serhiy Yanchuk. The spectrum of delay differential equations with multiple hierarchical large delays. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 151-175. doi: 10.3934/dcdss.2020321

[6]

Chongyang Liu, Meijia Han, Zhaohua Gong, Kok Lay Teo. Robust parameter estimation for constrained time-delay systems with inexact measurements. Journal of Industrial & Management Optimization, 2021, 17 (1) : 317-337. doi: 10.3934/jimo.2019113

[7]

Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020108

[8]

Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020341

[9]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[10]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[11]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[12]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

[13]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[14]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[15]

Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366

[16]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[17]

Shengbing Deng, Tingxi Hu, Chun-Lei Tang. $ N- $Laplacian problems with critical double exponential nonlinearities. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 987-1003. doi: 10.3934/dcds.2020306

[18]

Manil T. Mohan. Global attractors, exponential attractors and determining modes for the three dimensional Kelvin-Voigt fluids with "fading memory". Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020105

[19]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[20]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

2019 Impact Factor: 0.953

Metrics

  • PDF downloads (130)
  • HTML views (355)
  • Cited by (0)

Other articles
by authors

[Back to Top]