[1]
|
R. A. Adams and J. Fournier,
Sobolev Spaces, Academic press, 2003.
|
[2]
|
K. A. Ames and L. E. Payne, Asymptotic behavior for two regularizations of the Cauchy problem for the backward heat equation, Mathematical Models and Methods in Applied Sciences, 8 (1998), 187-202.
doi: 10.1142/S0218202598000093.
|
[3]
|
J. Cheng, J. Nakagawa, M. Yamamoto, et al., Uniqueness in an inverse problem for a one-dimensional fractional diffusion equation,
Inverse problems, 25 (2009), 115002, 16pp.
doi: 10.1088/0266-5611/25/11/115002.
|
[4]
|
M. Denche and K. Bessila, A modified quasi-boundary value method for ill-posed problems, Journal of Mathematical Analysis and Applications, 301 (2005), 419-426.
doi: 10.1016/j.jmaa.2004.08.001.
|
[5]
|
X. L. Feng, L. Eld$\acute{e}$n and C. L. Fu, A quasi-boundary-value method for the Cauchy problem
for elliptic equations with nonhomogeneous Neumann data, Journal of Inverse and Ill-Posed Problems, 18 (2010), 617-645.
doi: 10.1515/JIIP.2010.028.
|
[6]
|
D. N. H$\grave{a}$o, D. N. Van and D. Lesnic, A non-local boundary value problem method for the Cauchy problem for elliptic equations,
Inverse Problems, 25 (2009), 055002, 27pp.
doi: 10.1088/0266-5611/25/5/055002.
|
[7]
|
D. N. H$\grave{a}$o, D. N. Van and D. Lesnic, Regularization of parabolic equations backward in time
by a non-local boundary value problem method, IMA Journal of Applied Mathematics, 75 (2010), 291-315.
doi: 10.1093/imamat/hxp026.
|
[8]
|
B. Jin and W. Rundell, An inverse problem for a one-dimensional time-fractional diffusion problem,
Inverse Problems, 28 (2012), 075010, 19pp.
doi: 10.1088/0266-5611/28/7/075010.
|
[9]
|
J. J. Liu and M. Yamamoto, A backward problem for the time-fractional diffusion equation, Applicable Analysis, 89 (2010), 1769-1788.
doi: 10.1080/00036810903479731.
|
[10]
|
L. Miller and M. Yamamoto, Coefficient inverse problem for a fractional diffusion equation,
Inverse Problems, 29 (2013), 075013, 8pp.
doi: 10.1088/0266-5611/29/7/075013.
|
[11]
|
I. Podlubny,
Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and some of Their Applications, Mathematics in Science and Engineering, 198, CA: Academic Press Inc, San Diego, 1999.
|
[12]
|
Z. Ruan, Z. Yang and X. Lu, An inverse source problem with sparsity constraint for the timefractional diffusion equation, Advances in Applied Mathematics and Mechanics, 8 (2016), 1-18.
doi: 10.4208/aamm.2014.m722.
|
[13]
|
Z. Ruan and Z. Wang, Identification of a time-dependent source term for a time fractional
diffusion problem, Applicable Analysis, 96 (2017), 1638-1655.
doi: 10.1080/00036811.2016.1232400.
|
[14]
|
R. E. Showalter, Cauchy problem for hyper-parabolic partial differential equations, North-Holland Mathematics Studies, 110 (1985), 421-425.
doi: 10.1016/S0304-0208(08)72739-7.
|
[15]
|
J. G. Wang, Y. B. Zhou and T. Wei, Two regularization methods to identify a space-dependent
source for the time-fractional diffusion equation, Applied Numerical Mathematics, 68 (2013), 39-57.
doi: 10.1016/j.apnum.2013.01.001.
|
[16]
|
Z. Wang, S. Qiu and Z. Ruan, A regularized optimization method for identifying the spacedependent source and the initial value simultaneously in a parabolic equation, Computers & Mathematics with Applications, 67 (2014), 1345-1357.
doi: 10.1016/j.camwa.2014.02.007.
|
[17]
|
L. Wang and J. Liu, Data regularization for a backward time-fractional diffusion problem, Computers & Mathematics with Applications, 64 (2012), 3613-3626.
doi: 10.1016/j.camwa.2012.10.001.
|
[18]
|
J. G. Wang, Y. B. Zhou and T. Wei, A posteriori regularization parameter choice rule for
the quasi-boundary value method for the backward time-fractional diffusion problem, Applied Mathematics Letters, 26 (2013), 741-747.
doi: 10.1016/j.aml.2013.02.006.
|
[19]
|
T. Wei and Z. Q. Zhang, Reconstruction of a time-dependent source term in a time-fractional
diffusion equation, Engineering Analysis with Boundary Elements, 37 (2013), 23-31.
doi: 10.1016/j.enganabound.2012.08.003.
|
[20]
|
T. Wei and J. Wang, A modified quasi-boundary value method for an inverse source problem
of the time-fractional diffusion equation, Applied Numerical Mathematics, 78 (2014), 95-111.
doi: 10.1016/j.apnum.2013.12.002.
|
[21]
|
X. T. Xiong, J. X. Wang and M. Li, An optimal method for fractional heat conduction
problem backward in time, Applicable Analysis, 91 (2012), 823-840.
doi: 10.1080/00036811.2011.601455.
|
[22]
|
M. Yamamoto and Y. Zhang, Conditional stability in determining a zeroth-order coefficient in a half-order fractional diffusion equation by a Carleman estimate,
Inverse Problems, 28 (2012), 105010, 10pp.
doi: 10.1088/0266-5611/28/10/105010.
|
[23]
|
M. Yang and J. Liu, Solving a final value fractional diffusion problem by boundary condition
regularization, Applied Numerical Mathematics, 66 (2013), 45-58.
doi: 10.1016/j.apnum.2012.11.009.
|
[24]
|
X. Ye and C. Xu, Spectral optimization methods for the time fractional diffusion inverse problem, Numer. Math., Theory Methods Appl., 6 (2013), 499-516.
|
[25]
|
Y. Zhang and X. Xu, Inverse source problem for a fractional diffusion equation,
Inverse Problems, 27 (2011), 035010, 12pp.
doi: 10.1088/0266-5611/27/3/035010.
|