December  2018, 7(4): 669-682. doi: 10.3934/eect.2018032

Solving an inverse source problem for a time fractional diffusion equation by a modified quasi-boundary value method

1. 

Fundamental Science on Radioactive Geology and Exploration Technology Laboratory, East China University of Technology, Nanchang, Jiangxi 330013, China

2. 

School of Science, East China University of Technology, Nanchang, Jiangxi 330013, China

3. 

School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China

* Corresponding author: Zhousheng Ruan

Received  March 2017 Revised  May 2018 Published  September 2018

Fund Project: The first author is supported by National Natural Science Foundation of China (11661004, 11561003, 11761007), Natural Science Foundation of Jiangxi Province of China (20161BAB201034), Science and Technology Research Project of Education Department of Jiangxi Province (GJJ150568), Foundation of Academic and Technical Leaders Program for Major Subjects in Jiangxi Province (20172BCB22019).

In this paper, we propose a modified quasi-boundary value method to solve an inverse source problem for a time fractional diffusion equation. Under some boundedness assumption, the corresponding convergence rate estimates are derived by using an a priori and an a posteriori regularization parameter choice rules, respectively. Based on the superposition principle, we propose a direct inversion algorithm in a parallel manner.

Citation: Zhousheng Ruan, Sen Zhang, Sican Xiong. Solving an inverse source problem for a time fractional diffusion equation by a modified quasi-boundary value method. Evolution Equations & Control Theory, 2018, 7 (4) : 669-682. doi: 10.3934/eect.2018032
References:
[1]

R. A. Adams and J. Fournier, Sobolev Spaces, Academic press, 2003.  Google Scholar

[2]

K. A. Ames and L. E. Payne, Asymptotic behavior for two regularizations of the Cauchy problem for the backward heat equation, Mathematical Models and Methods in Applied Sciences, 8 (1998), 187-202.  doi: 10.1142/S0218202598000093.  Google Scholar

[3]

J. Cheng, J. Nakagawa, M. Yamamoto, et al., Uniqueness in an inverse problem for a one-dimensional fractional diffusion equation, Inverse problems, 25 (2009), 115002, 16pp. doi: 10.1088/0266-5611/25/11/115002.  Google Scholar

[4]

M. Denche and K. Bessila, A modified quasi-boundary value method for ill-posed problems, Journal of Mathematical Analysis and Applications, 301 (2005), 419-426.  doi: 10.1016/j.jmaa.2004.08.001.  Google Scholar

[5]

X. L. FengL. Eld$\acute{e}$n and C. L. Fu, A quasi-boundary-value method for the Cauchy problem for elliptic equations with nonhomogeneous Neumann data, Journal of Inverse and Ill-Posed Problems, 18 (2010), 617-645.  doi: 10.1515/JIIP.2010.028.  Google Scholar

[6]

D. N. H$\grave{a}$o, D. N. Van and D. Lesnic, A non-local boundary value problem method for the Cauchy problem for elliptic equations, Inverse Problems, 25 (2009), 055002, 27pp. doi: 10.1088/0266-5611/25/5/055002.  Google Scholar

[7]

D. N. H$\grave{a}$oD. N. Van and D. Lesnic, Regularization of parabolic equations backward in time by a non-local boundary value problem method, IMA Journal of Applied Mathematics, 75 (2010), 291-315.  doi: 10.1093/imamat/hxp026.  Google Scholar

[8]

B. Jin and W. Rundell, An inverse problem for a one-dimensional time-fractional diffusion problem, Inverse Problems, 28 (2012), 075010, 19pp. doi: 10.1088/0266-5611/28/7/075010.  Google Scholar

[9]

J. J. Liu and M. Yamamoto, A backward problem for the time-fractional diffusion equation, Applicable Analysis, 89 (2010), 1769-1788.  doi: 10.1080/00036810903479731.  Google Scholar

[10]

L. Miller and M. Yamamoto, Coefficient inverse problem for a fractional diffusion equation, Inverse Problems, 29 (2013), 075013, 8pp. doi: 10.1088/0266-5611/29/7/075013.  Google Scholar

[11]

I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and some of Their Applications, Mathematics in Science and Engineering, 198, CA: Academic Press Inc, San Diego, 1999.  Google Scholar

[12]

Z. RuanZ. Yang and X. Lu, An inverse source problem with sparsity constraint for the timefractional diffusion equation, Advances in Applied Mathematics and Mechanics, 8 (2016), 1-18.  doi: 10.4208/aamm.2014.m722.  Google Scholar

[13]

Z. Ruan and Z. Wang, Identification of a time-dependent source term for a time fractional diffusion problem, Applicable Analysis, 96 (2017), 1638-1655.  doi: 10.1080/00036811.2016.1232400.  Google Scholar

[14]

R. E. Showalter, Cauchy problem for hyper-parabolic partial differential equations, North-Holland Mathematics Studies, 110 (1985), 421-425.  doi: 10.1016/S0304-0208(08)72739-7.  Google Scholar

[15]

J. G. WangY. B. Zhou and T. Wei, Two regularization methods to identify a space-dependent source for the time-fractional diffusion equation, Applied Numerical Mathematics, 68 (2013), 39-57.  doi: 10.1016/j.apnum.2013.01.001.  Google Scholar

[16]

Z. WangS. Qiu and Z. Ruan, A regularized optimization method for identifying the spacedependent source and the initial value simultaneously in a parabolic equation, Computers & Mathematics with Applications, 67 (2014), 1345-1357.  doi: 10.1016/j.camwa.2014.02.007.  Google Scholar

[17]

L. Wang and J. Liu, Data regularization for a backward time-fractional diffusion problem, Computers & Mathematics with Applications, 64 (2012), 3613-3626.  doi: 10.1016/j.camwa.2012.10.001.  Google Scholar

[18]

J. G. WangY. B. Zhou and T. Wei, A posteriori regularization parameter choice rule for the quasi-boundary value method for the backward time-fractional diffusion problem, Applied Mathematics Letters, 26 (2013), 741-747.  doi: 10.1016/j.aml.2013.02.006.  Google Scholar

[19]

T. Wei and Z. Q. Zhang, Reconstruction of a time-dependent source term in a time-fractional diffusion equation, Engineering Analysis with Boundary Elements, 37 (2013), 23-31.  doi: 10.1016/j.enganabound.2012.08.003.  Google Scholar

[20]

T. Wei and J. Wang, A modified quasi-boundary value method for an inverse source problem of the time-fractional diffusion equation, Applied Numerical Mathematics, 78 (2014), 95-111.  doi: 10.1016/j.apnum.2013.12.002.  Google Scholar

[21]

X. T. XiongJ. X. Wang and M. Li, An optimal method for fractional heat conduction problem backward in time, Applicable Analysis, 91 (2012), 823-840.  doi: 10.1080/00036811.2011.601455.  Google Scholar

[22]

M. Yamamoto and Y. Zhang, Conditional stability in determining a zeroth-order coefficient in a half-order fractional diffusion equation by a Carleman estimate, Inverse Problems, 28 (2012), 105010, 10pp. doi: 10.1088/0266-5611/28/10/105010.  Google Scholar

[23]

M. Yang and J. Liu, Solving a final value fractional diffusion problem by boundary condition regularization, Applied Numerical Mathematics, 66 (2013), 45-58.  doi: 10.1016/j.apnum.2012.11.009.  Google Scholar

[24]

X. Ye and C. Xu, Spectral optimization methods for the time fractional diffusion inverse problem, Numer. Math., Theory Methods Appl., 6 (2013), 499-516.   Google Scholar

[25]

Y. Zhang and X. Xu, Inverse source problem for a fractional diffusion equation, Inverse Problems, 27 (2011), 035010, 12pp. doi: 10.1088/0266-5611/27/3/035010.  Google Scholar

show all references

References:
[1]

R. A. Adams and J. Fournier, Sobolev Spaces, Academic press, 2003.  Google Scholar

[2]

K. A. Ames and L. E. Payne, Asymptotic behavior for two regularizations of the Cauchy problem for the backward heat equation, Mathematical Models and Methods in Applied Sciences, 8 (1998), 187-202.  doi: 10.1142/S0218202598000093.  Google Scholar

[3]

J. Cheng, J. Nakagawa, M. Yamamoto, et al., Uniqueness in an inverse problem for a one-dimensional fractional diffusion equation, Inverse problems, 25 (2009), 115002, 16pp. doi: 10.1088/0266-5611/25/11/115002.  Google Scholar

[4]

M. Denche and K. Bessila, A modified quasi-boundary value method for ill-posed problems, Journal of Mathematical Analysis and Applications, 301 (2005), 419-426.  doi: 10.1016/j.jmaa.2004.08.001.  Google Scholar

[5]

X. L. FengL. Eld$\acute{e}$n and C. L. Fu, A quasi-boundary-value method for the Cauchy problem for elliptic equations with nonhomogeneous Neumann data, Journal of Inverse and Ill-Posed Problems, 18 (2010), 617-645.  doi: 10.1515/JIIP.2010.028.  Google Scholar

[6]

D. N. H$\grave{a}$o, D. N. Van and D. Lesnic, A non-local boundary value problem method for the Cauchy problem for elliptic equations, Inverse Problems, 25 (2009), 055002, 27pp. doi: 10.1088/0266-5611/25/5/055002.  Google Scholar

[7]

D. N. H$\grave{a}$oD. N. Van and D. Lesnic, Regularization of parabolic equations backward in time by a non-local boundary value problem method, IMA Journal of Applied Mathematics, 75 (2010), 291-315.  doi: 10.1093/imamat/hxp026.  Google Scholar

[8]

B. Jin and W. Rundell, An inverse problem for a one-dimensional time-fractional diffusion problem, Inverse Problems, 28 (2012), 075010, 19pp. doi: 10.1088/0266-5611/28/7/075010.  Google Scholar

[9]

J. J. Liu and M. Yamamoto, A backward problem for the time-fractional diffusion equation, Applicable Analysis, 89 (2010), 1769-1788.  doi: 10.1080/00036810903479731.  Google Scholar

[10]

L. Miller and M. Yamamoto, Coefficient inverse problem for a fractional diffusion equation, Inverse Problems, 29 (2013), 075013, 8pp. doi: 10.1088/0266-5611/29/7/075013.  Google Scholar

[11]

I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and some of Their Applications, Mathematics in Science and Engineering, 198, CA: Academic Press Inc, San Diego, 1999.  Google Scholar

[12]

Z. RuanZ. Yang and X. Lu, An inverse source problem with sparsity constraint for the timefractional diffusion equation, Advances in Applied Mathematics and Mechanics, 8 (2016), 1-18.  doi: 10.4208/aamm.2014.m722.  Google Scholar

[13]

Z. Ruan and Z. Wang, Identification of a time-dependent source term for a time fractional diffusion problem, Applicable Analysis, 96 (2017), 1638-1655.  doi: 10.1080/00036811.2016.1232400.  Google Scholar

[14]

R. E. Showalter, Cauchy problem for hyper-parabolic partial differential equations, North-Holland Mathematics Studies, 110 (1985), 421-425.  doi: 10.1016/S0304-0208(08)72739-7.  Google Scholar

[15]

J. G. WangY. B. Zhou and T. Wei, Two regularization methods to identify a space-dependent source for the time-fractional diffusion equation, Applied Numerical Mathematics, 68 (2013), 39-57.  doi: 10.1016/j.apnum.2013.01.001.  Google Scholar

[16]

Z. WangS. Qiu and Z. Ruan, A regularized optimization method for identifying the spacedependent source and the initial value simultaneously in a parabolic equation, Computers & Mathematics with Applications, 67 (2014), 1345-1357.  doi: 10.1016/j.camwa.2014.02.007.  Google Scholar

[17]

L. Wang and J. Liu, Data regularization for a backward time-fractional diffusion problem, Computers & Mathematics with Applications, 64 (2012), 3613-3626.  doi: 10.1016/j.camwa.2012.10.001.  Google Scholar

[18]

J. G. WangY. B. Zhou and T. Wei, A posteriori regularization parameter choice rule for the quasi-boundary value method for the backward time-fractional diffusion problem, Applied Mathematics Letters, 26 (2013), 741-747.  doi: 10.1016/j.aml.2013.02.006.  Google Scholar

[19]

T. Wei and Z. Q. Zhang, Reconstruction of a time-dependent source term in a time-fractional diffusion equation, Engineering Analysis with Boundary Elements, 37 (2013), 23-31.  doi: 10.1016/j.enganabound.2012.08.003.  Google Scholar

[20]

T. Wei and J. Wang, A modified quasi-boundary value method for an inverse source problem of the time-fractional diffusion equation, Applied Numerical Mathematics, 78 (2014), 95-111.  doi: 10.1016/j.apnum.2013.12.002.  Google Scholar

[21]

X. T. XiongJ. X. Wang and M. Li, An optimal method for fractional heat conduction problem backward in time, Applicable Analysis, 91 (2012), 823-840.  doi: 10.1080/00036811.2011.601455.  Google Scholar

[22]

M. Yamamoto and Y. Zhang, Conditional stability in determining a zeroth-order coefficient in a half-order fractional diffusion equation by a Carleman estimate, Inverse Problems, 28 (2012), 105010, 10pp. doi: 10.1088/0266-5611/28/10/105010.  Google Scholar

[23]

M. Yang and J. Liu, Solving a final value fractional diffusion problem by boundary condition regularization, Applied Numerical Mathematics, 66 (2013), 45-58.  doi: 10.1016/j.apnum.2012.11.009.  Google Scholar

[24]

X. Ye and C. Xu, Spectral optimization methods for the time fractional diffusion inverse problem, Numer. Math., Theory Methods Appl., 6 (2013), 499-516.   Google Scholar

[25]

Y. Zhang and X. Xu, Inverse source problem for a fractional diffusion equation, Inverse Problems, 27 (2011), 035010, 12pp. doi: 10.1088/0266-5611/27/3/035010.  Google Scholar

Figure 1.  Error curves for example 1
Figure 2.  Error surfaces for example 2
Table 1.  Inversional results for example 1 with different relative errors
$\delta$ 0.05% 0.1% 0.2% 0.4% 0.8% 1.6%
$T_1$=0.1 $e(f, \delta)$ 2.1% 2.9% 4.0% 5.5% 7.9% 10.1%
$C_r$ 0.34 0.33 0.31 0.38 0.24
$T_1$=0.2 $e(f, \delta)$ 2.1% 3.1% 4.1% 5.9% 8.3% 11.0%
$C_r$ 0.38 0.28 0.35 0.33 0.28
$T_1$=0.4 $e(f, \delta)$ 2.2% 3.2% 4.2% 6.2% 8.5 % 11.5%
$C_r$ 0.39 0.26 0.37 0.31 0.30
$T_1$=0.8 $e(f, \delta)$ 2.2% 3.3 % 4.3% 6.3% 8.6 % 11.8%
$C_r$ 0.40 0.25 0.38 0.30 0.31
$T_1$=1 $e(f, \delta)$ 2.2% 3.3 % 4.3% 6.4% 8.6 % 11.8%
$C_r$ 0.40 0.25 0.38 0.29 0.31
$\delta$ 0.05% 0.1% 0.2% 0.4% 0.8% 1.6%
$T_1$=0.1 $e(f, \delta)$ 2.1% 2.9% 4.0% 5.5% 7.9% 10.1%
$C_r$ 0.34 0.33 0.31 0.38 0.24
$T_1$=0.2 $e(f, \delta)$ 2.1% 3.1% 4.1% 5.9% 8.3% 11.0%
$C_r$ 0.38 0.28 0.35 0.33 0.28
$T_1$=0.4 $e(f, \delta)$ 2.2% 3.2% 4.2% 6.2% 8.5 % 11.5%
$C_r$ 0.39 0.26 0.37 0.31 0.30
$T_1$=0.8 $e(f, \delta)$ 2.2% 3.3 % 4.3% 6.3% 8.6 % 11.8%
$C_r$ 0.40 0.25 0.38 0.30 0.31
$T_1$=1 $e(f, \delta)$ 2.2% 3.3 % 4.3% 6.4% 8.6 % 11.8%
$C_r$ 0.40 0.25 0.38 0.29 0.31
Table 2.  Inversional results for example 2 with different relative errors
$\delta$ 0.05% 0.1% 0.2% 0.4% 0.8% 1.6%
$T_1$=0.1 $e(f, \delta)$ 1.9% 2.8% 4.7% 6.9% 10.2% 14.7%
$C_r$ 0.41 0.50 0.37 0.39 0.36
$T_1$=0.2 $e(f, \delta)$ 1.9% 2.9% 4.7% 6.9% 10.3% 14.8%
$C_r$ 0.41 0.49 0.37 0.39 0.35
$T_1$=0.4 $e(f, \delta)$ 1.9% 2.9% 4.8% 7.0% 10.4 % 14.9%
$C_r$ 0.40 0.50 0.37 0.39 0.35
$T_1$=0.8 $e(f, \delta)$ 1.9% 2.9 % 4.8% 7.0% 10.5 % 14.9%
$C_r$ 0.40 0.50 0.38 0.40 0.34
$T_1$=1 $e(f, \delta)$ 1.9% 2.9 % 4.8% 7.0% 10.5 % 14.9%
$C_r$ 0.40 0.50 0.38 0.40 0.34
$\delta$ 0.05% 0.1% 0.2% 0.4% 0.8% 1.6%
$T_1$=0.1 $e(f, \delta)$ 1.9% 2.8% 4.7% 6.9% 10.2% 14.7%
$C_r$ 0.41 0.50 0.37 0.39 0.36
$T_1$=0.2 $e(f, \delta)$ 1.9% 2.9% 4.7% 6.9% 10.3% 14.8%
$C_r$ 0.41 0.49 0.37 0.39 0.35
$T_1$=0.4 $e(f, \delta)$ 1.9% 2.9% 4.8% 7.0% 10.4 % 14.9%
$C_r$ 0.40 0.50 0.37 0.39 0.35
$T_1$=0.8 $e(f, \delta)$ 1.9% 2.9 % 4.8% 7.0% 10.5 % 14.9%
$C_r$ 0.40 0.50 0.38 0.40 0.34
$T_1$=1 $e(f, \delta)$ 1.9% 2.9 % 4.8% 7.0% 10.5 % 14.9%
$C_r$ 0.40 0.50 0.38 0.40 0.34
[1]

Lekbir Afraites, Chorouk Masnaoui, Mourad Nachaoui. Shape optimization method for an inverse geometric source problem and stability at critical shape. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021006

[2]

Shumin Li, Masahiro Yamamoto, Bernadette Miara. A Carleman estimate for the linear shallow shell equation and an inverse source problem. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 367-380. doi: 10.3934/dcds.2009.23.367

[3]

Yi Zhou, Jianli Liu. The initial-boundary value problem on a strip for the equation of time-like extremal surfaces. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 381-397. doi: 10.3934/dcds.2009.23.381

[4]

Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020354

[5]

Vo Van Au, Hossein Jafari, Zakia Hammouch, Nguyen Huy Tuan. On a final value problem for a nonlinear fractional pseudo-parabolic equation. Electronic Research Archive, 2021, 29 (1) : 1709-1734. doi: 10.3934/era.2020088

[6]

Kazunori Matsui. Sharp consistency estimates for a pressure-Poisson problem with Stokes boundary value problems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1001-1015. doi: 10.3934/dcdss.2020380

[7]

Amru Hussein, Martin Saal, Marc Wrona. Primitive equations with horizontal viscosity: The initial value and The time-periodic problem for physical boundary conditions. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020398

[8]

Maho Endo, Yuki Kaneko, Yoshio Yamada. Free boundary problem for a reaction-diffusion equation with positive bistable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3375-3394. doi: 10.3934/dcds.2020033

[9]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[10]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[11]

Stanislav Nikolaevich Antontsev, Serik Ersultanovich Aitzhanov, Guzel Rashitkhuzhakyzy Ashurova. An inverse problem for the pseudo-parabolic equation with p-Laplacian. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021005

[12]

Vandana Sharma. Global existence and uniform estimates of solutions to reaction diffusion systems with mass transport type boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021001

[13]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[14]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, 2021, 14 (1) : 149-174. doi: 10.3934/krm.2020052

[15]

Vo Van Au, Mokhtar Kirane, Nguyen Huy Tuan. On a terminal value problem for a system of parabolic equations with nonlinear-nonlocal diffusion terms. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1579-1613. doi: 10.3934/dcdsb.2020174

[16]

Gheorghe Craciun, Jiaxin Jin, Casian Pantea, Adrian Tudorascu. Convergence to the complex balanced equilibrium for some chemical reaction-diffusion systems with boundary equilibria. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1305-1335. doi: 10.3934/dcdsb.2020164

[17]

Abdollah Borhanifar, Maria Alessandra Ragusa, Sohrab Valizadeh. High-order numerical method for two-dimensional Riesz space fractional advection-dispersion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020355

[18]

S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020435

[19]

Jean-Claude Saut, Yuexun Wang. Long time behavior of the fractional Korteweg-de Vries equation with cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1133-1155. doi: 10.3934/dcds.2020312

[20]

Mokhtari Yacine. Boundary controllability and boundary time-varying feedback stabilization of the 1D wave equation in non-cylindrical domains. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021004

2019 Impact Factor: 0.953

Metrics

  • PDF downloads (239)
  • HTML views (407)
  • Cited by (2)

Other articles
by authors

[Back to Top]