March  2019, 8(1): 73-100. doi: 10.3934/eect.2019005

Pattern formation in flows of asymmetrically interacting particles: Peristaltic pedestrian dynamics as a case study

1. 

Bogolyubov Institute for Theoretical Physics, Metrologichna str. 14B, 01413 Kiev, Ukraine

2. 

Continental AG, Vahrenwalder Strasse 9, D-30165 Hanover, Germany

3. 

Department of Applied Mathematics and Computer Science, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark

4. 

Department of Physics and Department of Applied Mathematics and Computer Science, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark

5. 

Department of Physics, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark

* Corresponding author: Mads Peter Sørensen

Received  July 2017 Revised  November 2017 Published  January 2019

Fund Project: This work is supported by Civilingeniør Frederik Leth Christiansens Almennyttige Fond, the Otto Mønsteds Fond and a special program of the National Academy of Sciences of Ukraine.

The influence of asymmetry in the coupling between repulsive particles is studied. A prominent example is the social force model for pedestrian dynamics in a long corridor where the asymmetry leads to anisotropy in the repulsion such that pedestrians in front, i.e., in walking direction, have a bigger influence on the pedestrian behavior than those behind. In addition to one- and two-lane free flow situations, a new traveling regime is found that is reminiscent of peristaltic motion. We study the regimes and their respective stabilityboth analytically and numerically. First, we introduce a modified social forcemodel and compute the boundaries between different regimes analytically bya perturbation analysis of the one-lane and two-lane flow. Afterwards, theresults are verified by direct numerical simulations in the parameter plane ofpedestrian density and repulsion strength from the walls.

Citation: Yuri B. Gaididei, Christian Marschler, Mads Peter Sørensen, Peter L. Christiansen, Jens Juul Rasmussen. Pattern formation in flows of asymmetrically interacting particles: Peristaltic pedestrian dynamics as a case study. Evolution Equations & Control Theory, 2019, 8 (1) : 73-100. doi: 10.3934/eect.2019005
References:
[1]

M. Abramowitz and I. Stegun, Handbook of Mathematical Functions, Dover Publications, Inc., New York, 1966.  Google Scholar

[2]

N. Bellomo and C. Dogbe, On the modeling of traffic and crowds: A survey of models, speculations, and perspectives, SIAM Review, 53 (2011), 409-463.  doi: 10.1137/090746677.  Google Scholar

[3]

V. J. Blue and J. L. Adler, Cellular automata microsimulation for modeling bi-directional pedestrian walkways, Transportation Research Part B, 35 (2001), 293-312.  doi: 10.1016/S0191-2615(99)00052-1.  Google Scholar

[4]

C. BursteddeK. KlauckA. Schadschneider and J. Zittartz, Simulation of pedestrian dynamics using a two-dimensional cellular automaton, Physica A, 295 (2001), 507-525.  doi: 10.1016/S0378-4371(01)00141-8.  Google Scholar

[5]

O. CorradiP. G. Hjorth and J. Starke, Equation-free detection and continuation of a Hopf bifurcation point in a particle model of pedestrian flow, SIAM Journal on Applied Dynamical Systems, 11 (2012), 1007-1032.  doi: 10.1137/110854072.  Google Scholar

[6]

T. Dessup, C. Coste and M. Saint Jean, Subcriticality of the zigzag transition: A nonlinear bifurcation analysis, Physical Review E, 91 (2015), 032917, 1-14. doi: 10.1103/PhysRevE.91.032917.  Google Scholar

[7]

T. Dessup, T. Maimbourg, C. Coste and M. Saint Jean, Linear instability of a zigzag pattern, Physical Review E, 91 (2015), 022908, 1-12. doi: 10.1103/PhysRevE.91.022908.  Google Scholar

[8]

F. Dietrich and G. Köster, Gradient navigation model for pedestrian dynamics, Physical Review E, 89 (2014), 062801, 1-8. doi: 10.1103/PhysRevE.89.062801.  Google Scholar

[9]

J. E. Galván-Moya and F. M. Peeters, Ginzburg-Landau theory of the zigzag transition in quasi-one-dimensional classical Wigner crystals, Physical Review B, 84 (2011), 134106, 1-10. Google Scholar

[10]

D. Helbing, Traffic and related self-driven many-particle systems, Reviews of Modern Physics, 73 (2001), 1067-1141.  doi: 10.1103/RevModPhys.73.1067.  Google Scholar

[11]

D. HelbingP. MolnarI. J. Farkas and K. Bolay, Self-organizing pedestrian movement, Environment and Planning B-planning and Design, 28 (2001), 361-383.  doi: 10.1068/b2697.  Google Scholar

[12]

D. Helbing and P. Molnar, Social force model for pedestrian dynamics, Physical Review E, 51 (1995), 4282-4286.  doi: 10.1103/PhysRevE.51.4282.  Google Scholar

[13]

D. HelbingI. Farkas and T. Vicsek, Simulating dynamical features of escape panic, Nature, 407 (2000), 487-490.  doi: 10.1038/35035023.  Google Scholar

[14]

S. P. Hoogendoorn and W. Daamen, Pedestrian behavior at bottlenecks, Transportation Science, 39 (2005), 147-288.  doi: 10.1287/trsc.1040.0102.  Google Scholar

[15]

A. Jelić, C. Appert-Rolland, S. Lemercier and J. Pettré, Properties of pedestrians walking in line: Fundamental diagrams, Physical Review E, 85 (2012), 036111, 1-9. Google Scholar

[16]

A. Johansson and D. Helbing, Crowd dynamics, in: Econophysics and Sociophysics. Trends and Perspectives (eds. B.K. Chakrabarti, A. Chakraborti and A. Chatterjee), Wiley-VCH, Weinheim, (2006), 449-472. doi: 10.1002/9783527610006.ch16.  Google Scholar

[17]

A. JohanssonD. Helbing and P. K. Shukla, Specification of the social force pedestrian model by evolutionary adjustment to video tracking data, Advances in Complex Systems, 10 (2007), 271-288.  doi: 10.1142/S0219525907001355.  Google Scholar

[18]

B. S. Kerner, The physics of Traffic: Empirical Freeway Pattern Features, Engineering Applications, and Theory, 1st edition, Springer-Verlag, Berlin Heidelberg, 2004. doi: 10.1007/978-3-540-40986-1.  Google Scholar

[19]

Y. G. Kevrekidis and G. Samaey, Equation-free multiscale computation: Algorithms and applications, Annual Review of Physical Chemistry, 60 (2009), 321-344.  doi: 10.1146/annurev.physchem.59.032607.093610.  Google Scholar

[20]

H.-K. Li, E. Urban, C. Noel, A. Chuang, Y. Xia, A. Ransford, B. Hemmerling, Y. Wang, T. Li, H. Häffner and X. Zhang, Realization of translational symmetry in trapped cold ion rings, Physical Review Letters, 118 (2017), 053001, 1-5. doi: 10.1103/PhysRevLett.118.053001.  Google Scholar

[21]

C. MarschlerJ. StarkeM. P. SørensenYu. Gaididei and P. L. Christiansen, Pattern formation in annular systems of repulsive particles, Physics Letters A, 380 (2016), 166-170.  doi: 10.1016/j.physleta.2015.10.038.  Google Scholar

[22]

C. Marschler, J. Starke, P. Liu and Y. G. Kevrekidis, Coarse-grained particle model for pedestrian flow using diffusion maps, Physical Review E, 89 (2014), 013304, 1-11. doi: 10.1103/PhysRevE.89.013304.  Google Scholar

[23]

C. Marschler, J. Sieber, P. G. Hjorth and J. Starke, Equation-free analysis of macroscopic behavior in traffic and pedestrian flow, in: Traffic and Granular Flow '13 (eds. M. Chraibi, M. Boltes, A. Schadschneider and A. X. Armin Seyfried) Springer-Verlag, (2015), 423-439. Google Scholar

[24]

C. Marschler, J. Sieber, R. Berkemer, A. Kawamoto and J. Starke, Implicit methods for equation-free analysis: Convergence results and analysis of emergent waves in microscopic traffic models, SIAM Journal on Applied Dynamical Systems, 13 (2014), 1202-1238, [http://arXiv.org/abs/1301.6044] doi: 10.1137/130913961.  Google Scholar

[25]

J. E. Marsden and M. McCracken, The Hopf Bifurcation and Its Applications, Springer-Verlag, New York, 1976.  Google Scholar

[26]

M. Moussaïd, E.G. Guillot, M. Moreau, J. Fehrenbach, O. Chabiron, S. Lemercier, J. Pettré, C. Appert-Rolland, P. Degond and G. Theraulaz, Traffic Instabilities in Self-Organized Pedestrian Crowds, PLoS Computational Biology, 8 (2012), e1002442, 1-10. Google Scholar

[27]

A. Schadschneider and A. Seyfried, Empirical results for pedestrian dynamics and their implications for modeling, Networks and Heterogeneous media, 6 (2011), 545-560.  doi: 10.3934/nhm.2011.6.545.  Google Scholar

[28]

J. P. Schiffer, Phase transitions in anisotropically confined ionic crystals, Physical Review Letters, 70 (1993), 818-821.  doi: 10.1103/PhysRevLett.70.818.  Google Scholar

[29]

W. TianW. SongJ. MaZ. FangA. Seyfried and J. Liddle, Experimental study of pedestrian behaviors in a corridor based on digital image processing, Fire Safety Journal, 47 (2012), 8-15.  doi: 10.1016/j.firesaf.2011.09.005.  Google Scholar

[30]

T. Vicsek and A. Zafeiris, Collective motion, Physics Reports, 517 (2012), 71-140.  doi: 10.1016/j.physrep.2012.03.004.  Google Scholar

[31]

D. E. Wolf, M. Schreckenberg and A. Bachem (Eds.), Traffic and Granular Flow, World Scientific, Singapore, 1996. doi: 10.1142/9789814531276.  Google Scholar

[32]

Z. Xiaoping, Z. Tingkuan and L. Mengting, Modeling crowd evacuation of a building based on seven methodological approaches, Building and Environment, 44 (2009), 437-445. Google Scholar

show all references

References:
[1]

M. Abramowitz and I. Stegun, Handbook of Mathematical Functions, Dover Publications, Inc., New York, 1966.  Google Scholar

[2]

N. Bellomo and C. Dogbe, On the modeling of traffic and crowds: A survey of models, speculations, and perspectives, SIAM Review, 53 (2011), 409-463.  doi: 10.1137/090746677.  Google Scholar

[3]

V. J. Blue and J. L. Adler, Cellular automata microsimulation for modeling bi-directional pedestrian walkways, Transportation Research Part B, 35 (2001), 293-312.  doi: 10.1016/S0191-2615(99)00052-1.  Google Scholar

[4]

C. BursteddeK. KlauckA. Schadschneider and J. Zittartz, Simulation of pedestrian dynamics using a two-dimensional cellular automaton, Physica A, 295 (2001), 507-525.  doi: 10.1016/S0378-4371(01)00141-8.  Google Scholar

[5]

O. CorradiP. G. Hjorth and J. Starke, Equation-free detection and continuation of a Hopf bifurcation point in a particle model of pedestrian flow, SIAM Journal on Applied Dynamical Systems, 11 (2012), 1007-1032.  doi: 10.1137/110854072.  Google Scholar

[6]

T. Dessup, C. Coste and M. Saint Jean, Subcriticality of the zigzag transition: A nonlinear bifurcation analysis, Physical Review E, 91 (2015), 032917, 1-14. doi: 10.1103/PhysRevE.91.032917.  Google Scholar

[7]

T. Dessup, T. Maimbourg, C. Coste and M. Saint Jean, Linear instability of a zigzag pattern, Physical Review E, 91 (2015), 022908, 1-12. doi: 10.1103/PhysRevE.91.022908.  Google Scholar

[8]

F. Dietrich and G. Köster, Gradient navigation model for pedestrian dynamics, Physical Review E, 89 (2014), 062801, 1-8. doi: 10.1103/PhysRevE.89.062801.  Google Scholar

[9]

J. E. Galván-Moya and F. M. Peeters, Ginzburg-Landau theory of the zigzag transition in quasi-one-dimensional classical Wigner crystals, Physical Review B, 84 (2011), 134106, 1-10. Google Scholar

[10]

D. Helbing, Traffic and related self-driven many-particle systems, Reviews of Modern Physics, 73 (2001), 1067-1141.  doi: 10.1103/RevModPhys.73.1067.  Google Scholar

[11]

D. HelbingP. MolnarI. J. Farkas and K. Bolay, Self-organizing pedestrian movement, Environment and Planning B-planning and Design, 28 (2001), 361-383.  doi: 10.1068/b2697.  Google Scholar

[12]

D. Helbing and P. Molnar, Social force model for pedestrian dynamics, Physical Review E, 51 (1995), 4282-4286.  doi: 10.1103/PhysRevE.51.4282.  Google Scholar

[13]

D. HelbingI. Farkas and T. Vicsek, Simulating dynamical features of escape panic, Nature, 407 (2000), 487-490.  doi: 10.1038/35035023.  Google Scholar

[14]

S. P. Hoogendoorn and W. Daamen, Pedestrian behavior at bottlenecks, Transportation Science, 39 (2005), 147-288.  doi: 10.1287/trsc.1040.0102.  Google Scholar

[15]

A. Jelić, C. Appert-Rolland, S. Lemercier and J. Pettré, Properties of pedestrians walking in line: Fundamental diagrams, Physical Review E, 85 (2012), 036111, 1-9. Google Scholar

[16]

A. Johansson and D. Helbing, Crowd dynamics, in: Econophysics and Sociophysics. Trends and Perspectives (eds. B.K. Chakrabarti, A. Chakraborti and A. Chatterjee), Wiley-VCH, Weinheim, (2006), 449-472. doi: 10.1002/9783527610006.ch16.  Google Scholar

[17]

A. JohanssonD. Helbing and P. K. Shukla, Specification of the social force pedestrian model by evolutionary adjustment to video tracking data, Advances in Complex Systems, 10 (2007), 271-288.  doi: 10.1142/S0219525907001355.  Google Scholar

[18]

B. S. Kerner, The physics of Traffic: Empirical Freeway Pattern Features, Engineering Applications, and Theory, 1st edition, Springer-Verlag, Berlin Heidelberg, 2004. doi: 10.1007/978-3-540-40986-1.  Google Scholar

[19]

Y. G. Kevrekidis and G. Samaey, Equation-free multiscale computation: Algorithms and applications, Annual Review of Physical Chemistry, 60 (2009), 321-344.  doi: 10.1146/annurev.physchem.59.032607.093610.  Google Scholar

[20]

H.-K. Li, E. Urban, C. Noel, A. Chuang, Y. Xia, A. Ransford, B. Hemmerling, Y. Wang, T. Li, H. Häffner and X. Zhang, Realization of translational symmetry in trapped cold ion rings, Physical Review Letters, 118 (2017), 053001, 1-5. doi: 10.1103/PhysRevLett.118.053001.  Google Scholar

[21]

C. MarschlerJ. StarkeM. P. SørensenYu. Gaididei and P. L. Christiansen, Pattern formation in annular systems of repulsive particles, Physics Letters A, 380 (2016), 166-170.  doi: 10.1016/j.physleta.2015.10.038.  Google Scholar

[22]

C. Marschler, J. Starke, P. Liu and Y. G. Kevrekidis, Coarse-grained particle model for pedestrian flow using diffusion maps, Physical Review E, 89 (2014), 013304, 1-11. doi: 10.1103/PhysRevE.89.013304.  Google Scholar

[23]

C. Marschler, J. Sieber, P. G. Hjorth and J. Starke, Equation-free analysis of macroscopic behavior in traffic and pedestrian flow, in: Traffic and Granular Flow '13 (eds. M. Chraibi, M. Boltes, A. Schadschneider and A. X. Armin Seyfried) Springer-Verlag, (2015), 423-439. Google Scholar

[24]

C. Marschler, J. Sieber, R. Berkemer, A. Kawamoto and J. Starke, Implicit methods for equation-free analysis: Convergence results and analysis of emergent waves in microscopic traffic models, SIAM Journal on Applied Dynamical Systems, 13 (2014), 1202-1238, [http://arXiv.org/abs/1301.6044] doi: 10.1137/130913961.  Google Scholar

[25]

J. E. Marsden and M. McCracken, The Hopf Bifurcation and Its Applications, Springer-Verlag, New York, 1976.  Google Scholar

[26]

M. Moussaïd, E.G. Guillot, M. Moreau, J. Fehrenbach, O. Chabiron, S. Lemercier, J. Pettré, C. Appert-Rolland, P. Degond and G. Theraulaz, Traffic Instabilities in Self-Organized Pedestrian Crowds, PLoS Computational Biology, 8 (2012), e1002442, 1-10. Google Scholar

[27]

A. Schadschneider and A. Seyfried, Empirical results for pedestrian dynamics and their implications for modeling, Networks and Heterogeneous media, 6 (2011), 545-560.  doi: 10.3934/nhm.2011.6.545.  Google Scholar

[28]

J. P. Schiffer, Phase transitions in anisotropically confined ionic crystals, Physical Review Letters, 70 (1993), 818-821.  doi: 10.1103/PhysRevLett.70.818.  Google Scholar

[29]

W. TianW. SongJ. MaZ. FangA. Seyfried and J. Liddle, Experimental study of pedestrian behaviors in a corridor based on digital image processing, Fire Safety Journal, 47 (2012), 8-15.  doi: 10.1016/j.firesaf.2011.09.005.  Google Scholar

[30]

T. Vicsek and A. Zafeiris, Collective motion, Physics Reports, 517 (2012), 71-140.  doi: 10.1016/j.physrep.2012.03.004.  Google Scholar

[31]

D. E. Wolf, M. Schreckenberg and A. Bachem (Eds.), Traffic and Granular Flow, World Scientific, Singapore, 1996. doi: 10.1142/9789814531276.  Google Scholar

[32]

Z. Xiaoping, Z. Tingkuan and L. Mengting, Modeling crowd evacuation of a building based on seven methodological approaches, Building and Environment, 44 (2009), 437-445. Google Scholar

Figure 1.  Patterns emerging in the pedestrian model. Color indicates pedestrian index. Numerical solution of Eqs. (9) for parameters specified in the text.
Figure 2.  Transverse stationary distance $ b $ between pedestrians in the two-lane zig-zag flow shown in Fig. 1(b). Panel (a): $ b $ vs. density $ \rho $ for fixed $ \nu = 1 $, panel (b): $ b $ vs. interaction strength $ \nu $ for fixed $ \rho = 1 $, $ \rho $ being pedestrian density, $ \nu $ being strength of pedestrian wall interaction. Panel (a): in the region to the left (right) of the curve the flow is single (two-) lane. Panel (b): in the region to the left (right) of the curve the flow is two- (single) lane. Direct numerical simulations (circles) and analytical predictions (curves) are in agreement.
Figure 3.  Panel (a): the growth rate $ \Re(z_2) $ of the linear mode $ \mu = 2 $ vs the wave number $ k $. Panel (b): the growth rate of the first three harmonics of the linear mode $ \mu = 2 $ vs the mean interparticle distance $ a $. In both figures $ \epsilon = 0.5, \nu = 0.05, N = 32 $
Figure 4.  Bifurcation diagrams obtained from the linear stability analysis for $ N = 32 $ and the asymmetry parameter $ \epsilon = 0 $ (panel (a)) and $ \epsilon = 0.5 $ (panel (b)). Insets show details of the diagram in the vicinity of the two-lane regime instability. In the white (orange) area the one- (two-) lane flow is stable. In the blue area we observe the peristaltic regime and the distance between lanes is spatially and time modulated, in the green area the two-lane flow is linearly unstable, and the instability leads to unsorted motion as shown in Fig. 1(d)
Figure 5.  The same as in Fig. 4 for $ N = 128 $
Figure 6.  The order parameter $ R $ of the peristaltic phase vs. mean headway, $ a $, for fixed $ \nu = 0.05 $. Panel (a): $ R $ vs. $ a $, in the case of totally symmetric social interaction $ \epsilon = 0 $: panel (b) $ R $ vs. $ a $, in the case of partially asymmetric social interaction: $ \epsilon = 0.5 $. Panel (a): in the region between arrows a hysteretic behavior takes place: red-dot-curve presents downsweep stable branch, black-dot-curve presents upsweep stable branch. Panel (b): as in panel (a); the inset shows the hysteretic behavior near the right boundary of the peristaltic phase $ a = 3.198 $.
Figure 7.  Staggered transversal coordinates $ (-1)^n y_n $ in the mixed phase state for two different values of the pedestrian headway: $ a = 2.93 $ (panel (a)) and $ a = 3.13 $ (panel (b)). The social interaction is symmetric: $ \epsilon = 0 $. Other parameters are chosen inside the domain of mixed phases state: $ ~\nu = 0.05, ~N = 128 $. The solid lines represent the results obtained in the frame of the analytical approach, the dots represent the results of numerical solutions of Eqs. (9)
Figure 8.  Longitudinal distances between nearest neighbors $ x_{n+1}-x_n $ in the mixed phase state. All parameters are the same as in Fig. 7.
Figure 9.  Energy difference between the mixed state and the spatially homogeneous two-lane state as a function of the mean headway $a$ in the interval $a\in (a_2,a_3)$. The social interaction is symmetric $\epsilon=0$, the pedestrian-wall interaction is fixed: $\nu =0.05$
Figure 10.  The stationary value of the inverse width $\kappa$ vs the mean distance $a$ obtained from Eq. (81). The solid (dashed) curve presents a stable (unstable) solution. The curves are plotted in the mean distance interval $a\in(a_2,a_l)$, where the mixed phase is unstable in the linear anaylsis aproach and it is stable in the frame of the variational approach. The solid line gives the contour, where $\partial^2_\kappa {\mathcal E}_b=0$. The social interaction is symmetric $\epsilon=0$, the pedestrian-wall interaction is fixed: $\nu =0.05$
Figure 11.  Spatio-temporal evolution of the local distance between lanes $ \Delta y_n = |y_{n+1}-y_n| $ (panel (a)) and the excess density $ \Delta \rho_n = \frac{1}{x_{n+1}-x_n}-\frac{1}{a} $ (panel (b)) for totally asymmetric social interaction ($ \epsilon = 1 $). Other parameters are chosen inside the domain of peristaltic motion: $ ~ a = 1.4, ~\nu = 0.65 $. The two profiles are separated by the time difference $ \Delta t = 250 $
Figure 12.  Velocity of the peristaltic pulse as a function of the inverse density. Comparison of the analytical results obtained from Eq. (90) (solid curve) and full scale numerical results (dots). The social interaction is weakly asymmetric $ \epsilon = 0.01 $, the pedestrian-wall interaction is fixed: $ \nu = 0.05 $, the number of pedestrian $ N = 128 $
Figure 13.  Panel (a): The modulus of elliptic function $ m $ vs. mean headway $ a $, dashed line presents an energetically unstable branch. Panel (b): The dimensionless energy difference between the spatially homogeneous two-lane state and the peristaltic state $ \delta E = (E_{per}-E_{two-lane})/|E_{two-lane}| $ vs. mean headway $ a $. The critical headway $ a_r $ gives the right boundary of the peristaltic state stability interval. The two-lane state looses its stability and the peristaltic state is established for $ a<a_r $. The solid and dashed lines correspond to two branches presented in panel (a).
Figure 14.  Two stationary localized solutions $ Y(n) $ of Eq. (93) in the case of symmetric interparticle interaction for the mean headway $ a = a_r-0.0015 $, the pedestrian-wall interaction $ \nu = 0.05 $. The number of pedestrian is $ N = 128 $. The solid line corresponds to the energetically more favorable state.
Figure 15.  Staggered transversal coordinate $ (-1)^n y_n $ profile obtained by numerical simulations (dots) and analytically from Eq. (103). The social interaction is symmetric $ \epsilon = 0 $, the number of particles is $ N = 128 $, the pedestrian-wall interaction is fixed: $ \nu = 0.05 $, the mean headway $ a = a_r-0.001 $ (panel(a)), and $ a = a_r-0.0003 $ (panel(b))
Figure 16.  Pulse velocity in the vicinity of the bifurcation point $ a_r $ obtained from numerical solutions of Eq. (9) (dots) and from analysis (see Eq. (111)) in the case of weakly asymmetric interparticle interaction $ \epsilon = 0.01 $ for the mean headway $ 0<a_r-a\ll 1 $. The pedestrian-wall interaction is $ \nu = 0.05 $. The number of pedestrian is $ N = 128 $. See also Fig. 12
[1]

Amira M. Boughoufala, Ahmed Y. Abdallah. Attractors for FitzHugh-Nagumo lattice systems with almost periodic nonlinear parts. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1549-1563. doi: 10.3934/dcdsb.2020172

[2]

Alexandra Köthe, Anna Marciniak-Czochra, Izumi Takagi. Hysteresis-driven pattern formation in reaction-diffusion-ODE systems. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3595-3627. doi: 10.3934/dcds.2020170

[3]

Hua Shi, Xiang Zhang, Yuyan Zhang. Complex planar Hamiltonian systems: Linearization and dynamics. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020406

[4]

Jinfeng Wang, Sainan Wu, Junping Shi. Pattern formation in diffusive predator-prey systems with predator-taxis and prey-taxis. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1273-1289. doi: 10.3934/dcdsb.2020162

[5]

D. R. Michiel Renger, Johannes Zimmer. Orthogonality of fluxes in general nonlinear reaction networks. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 205-217. doi: 10.3934/dcdss.2020346

[6]

Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259

[7]

Evelyn Sander, Thomas Wanner. Equilibrium validation in models for pattern formation based on Sobolev embeddings. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 603-632. doi: 10.3934/dcdsb.2020260

[8]

Shigui Ruan. Nonlinear dynamics in tumor-immune system interaction models with delays. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 541-602. doi: 10.3934/dcdsb.2020282

[9]

Jie Shen, Nan Zheng. Efficient and accurate sav schemes for the generalized Zakharov systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 645-666. doi: 10.3934/dcdsb.2020262

[10]

Andrew Comech, Scipio Cuccagna. On asymptotic stability of ground states of some systems of nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1225-1270. doi: 10.3934/dcds.2020316

[11]

Simone Fagioli, Emanuela Radici. Opinion formation systems via deterministic particles approximation. Kinetic & Related Models, 2021, 14 (1) : 45-76. doi: 10.3934/krm.2020048

[12]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[13]

Xin Zhao, Tao Feng, Liang Wang, Zhipeng Qiu. Threshold dynamics and sensitivity analysis of a stochastic semi-Markov switched SIRS epidemic model with nonlinear incidence and vaccination. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021010

[14]

Yancong Xu, Lijun Wei, Xiaoyu Jiang, Zirui Zhu. Complex dynamics of a SIRS epidemic model with the influence of hospital bed number. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021016

[15]

Meilan Cai, Maoan Han. Limit cycle bifurcations in a class of piecewise smooth cubic systems with multiple parameters. Communications on Pure & Applied Analysis, 2021, 20 (1) : 55-75. doi: 10.3934/cpaa.2020257

[16]

Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020379

[17]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[18]

Jonathan J. Wylie, Robert M. Miura, Huaxiong Huang. Systems of coupled diffusion equations with degenerate nonlinear source terms: Linear stability and traveling waves. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 561-569. doi: 10.3934/dcds.2009.23.561

[19]

Joan Carles Tatjer, Arturo Vieiro. Dynamics of the QR-flow for upper Hessenberg real matrices. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1359-1403. doi: 10.3934/dcdsb.2020166

[20]

Mia Jukić, Hermen Jan Hupkes. Dynamics of curved travelling fronts for the discrete Allen-Cahn equation on a two-dimensional lattice. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020402

[Back to Top]