March  2019, 8(1): 149-162. doi: 10.3934/eect.2019009

Nonlinear waves in thermoelastic dielectrics

DIBRIS, University of Genoa, 16145 Genoa, Italy

The research leading to this paper has been developed under the auspices of INDAM, Italy

Received  December 2017 Revised  February 2018 Published  January 2019

This paper is addressed to the analysis of wave propagation in electroelastic materials. First the balance equations are reviewed and the entropy inequality is established. Next the constitutive equations are considered for a deformable and heat-conducting dielectric. To allow for discontinuity wave propagation, an appropriate objective rate equation of the heat flux is considered. The thermodynamic consistency of the whole set of constitutive equations is established. Next the nonlinear evolution equations so determined are tested in relation to wave propagation properties. Waves are investigated in the form of weak discontinuities and the whole system of equations for the jumps is obtained. As a particular simple case the propagation into an unperturbed region is examined. Both the classical electromagnetic waves and the thermal waves are found to occur. In both cases the mechanical term is found to be induced by the electrical or the thermal wave discontinuity.

Citation: Angelo Morro. Nonlinear waves in thermoelastic dielectrics. Evolution Equations & Control Theory, 2019, 8 (1) : 149-162. doi: 10.3934/eect.2019009
References:
[1]

R. Bustamante, A. Dorfmann and R. W. Ogden, On electric body forces and Maxwell stresses in nonlinearly electroelastic solids, Int. J. Engng Sci., 47 (2009), 1131-1141. doi: 10.1016/j.ijengsci.2008.10.010. Google Scholar

[2]

C. I. Christov and P. M. Jordan, Heat conduction paradox involving second-sound propagation in moving media, Phys. Rev. Letters, 94 (2005), 154301. doi: 10.1103/PhysRevLett.94.154301. Google Scholar

[3]

L. Dorfmann and R. W. Ogden, Nonlinear electroelasticity, Acta Mech., 174 (2005), 167-183. doi: 10.1007/s00707-004-0202-2. Google Scholar

[4]

L. Dorfmann and R. W. Ogden, Electroelastic waves in a finitely deformed electroactive material, IMA J. Appl. Math., 75 (2010), 603-636. doi: 10.1093/imamat/hxq022. Google Scholar

[5]

L. Dorfmann and R. W. Ogden, Nonlinear electroelasticity: Material properties, continuum theory and applications, Proc. R. Soc. A, 473 (2017), 20170311, 34 pp. doi: 10.1098/rspa.2017.0311. Google Scholar

[6]

A. C. Eringen and G. A. Maugin, Electrodynamics of Continua I: Foundations and Solid Media, Springer, New York 1990. Google Scholar

[7] M. E. GurtinE. Fried and L. Anand, The Mechanics and Thermodynamics of Continua, Cambridge University Press, 2011. doi: 10.1017/CBO9780511762956. Google Scholar
[8]

D. Griffiths, Electromagnetic theory, American Journal of Physics, 69 (2001), 829. doi: 10.1119/1.1371014. Google Scholar

[9]

A. Morro, Evolution equations and thermodynamic restrictions for dissipative solids, Math. Comp. Modelling, 52 (2010), 1869-1876. doi: 10.1016/j.mcm.2010.07.021. Google Scholar

[10]

A. Morro, Evolution equations for non-simple viscoelastic solids, J. Elasticity, 105 (2011), 93-105. doi: 10.1007/s10659-010-9292-3. Google Scholar

[11]

A. Morro, Thermodynamic consistency of objective rate equations, Mech. Res. Comm., 84 (2017), 72-76. doi: 10.1016/j.mechrescom.2017.06.008. Google Scholar

[12]

Y.-S. Pao and K. Hutter, Electrodynamics for moving elastic solids and viscous fluids, Proc. IEEE, 63 (1975), 1011-1021. doi: 10.1109/PROC.1975.9878. Google Scholar

[13]

B. Straughan, Heat Waves, Springer, Berlin, 2011. doi: 10.1007/978-1-4614-0493-4. Google Scholar

[14]

H. F. Tiersten, On the nonlinear equations of thermoelectroelasticity, Int. J. Engng Sci., 9 (1971), 587-604. doi: 10.1016/0020-7225(71)90062-0. Google Scholar

[15]

R. A. Toupin, A dynamical theory of elastic dielectrics, Int. J. Engng. Sci., 1 (1963), 101-126. doi: 10.1016/0020-7225(63)90027-2. Google Scholar

[16]

C. Truesdell and W. Noll, The Non-Linear Field Theories of Mechanics, in "Encyclopedia of Physics", Ⅲ/3, Springer, Berlin, 1965. Google Scholar

[17]

C. Truesdell and R. Toupin, The Classical Field Theories, in "Encyclopedia of Physics", Ⅲ/1, Springer, Berlin, 1960. Google Scholar

[18]

M. W. Zemansky, Heat and Thermodynamics, McGraw-Hill, New York, 1968.Google Scholar

show all references

References:
[1]

R. Bustamante, A. Dorfmann and R. W. Ogden, On electric body forces and Maxwell stresses in nonlinearly electroelastic solids, Int. J. Engng Sci., 47 (2009), 1131-1141. doi: 10.1016/j.ijengsci.2008.10.010. Google Scholar

[2]

C. I. Christov and P. M. Jordan, Heat conduction paradox involving second-sound propagation in moving media, Phys. Rev. Letters, 94 (2005), 154301. doi: 10.1103/PhysRevLett.94.154301. Google Scholar

[3]

L. Dorfmann and R. W. Ogden, Nonlinear electroelasticity, Acta Mech., 174 (2005), 167-183. doi: 10.1007/s00707-004-0202-2. Google Scholar

[4]

L. Dorfmann and R. W. Ogden, Electroelastic waves in a finitely deformed electroactive material, IMA J. Appl. Math., 75 (2010), 603-636. doi: 10.1093/imamat/hxq022. Google Scholar

[5]

L. Dorfmann and R. W. Ogden, Nonlinear electroelasticity: Material properties, continuum theory and applications, Proc. R. Soc. A, 473 (2017), 20170311, 34 pp. doi: 10.1098/rspa.2017.0311. Google Scholar

[6]

A. C. Eringen and G. A. Maugin, Electrodynamics of Continua I: Foundations and Solid Media, Springer, New York 1990. Google Scholar

[7] M. E. GurtinE. Fried and L. Anand, The Mechanics and Thermodynamics of Continua, Cambridge University Press, 2011. doi: 10.1017/CBO9780511762956. Google Scholar
[8]

D. Griffiths, Electromagnetic theory, American Journal of Physics, 69 (2001), 829. doi: 10.1119/1.1371014. Google Scholar

[9]

A. Morro, Evolution equations and thermodynamic restrictions for dissipative solids, Math. Comp. Modelling, 52 (2010), 1869-1876. doi: 10.1016/j.mcm.2010.07.021. Google Scholar

[10]

A. Morro, Evolution equations for non-simple viscoelastic solids, J. Elasticity, 105 (2011), 93-105. doi: 10.1007/s10659-010-9292-3. Google Scholar

[11]

A. Morro, Thermodynamic consistency of objective rate equations, Mech. Res. Comm., 84 (2017), 72-76. doi: 10.1016/j.mechrescom.2017.06.008. Google Scholar

[12]

Y.-S. Pao and K. Hutter, Electrodynamics for moving elastic solids and viscous fluids, Proc. IEEE, 63 (1975), 1011-1021. doi: 10.1109/PROC.1975.9878. Google Scholar

[13]

B. Straughan, Heat Waves, Springer, Berlin, 2011. doi: 10.1007/978-1-4614-0493-4. Google Scholar

[14]

H. F. Tiersten, On the nonlinear equations of thermoelectroelasticity, Int. J. Engng Sci., 9 (1971), 587-604. doi: 10.1016/0020-7225(71)90062-0. Google Scholar

[15]

R. A. Toupin, A dynamical theory of elastic dielectrics, Int. J. Engng. Sci., 1 (1963), 101-126. doi: 10.1016/0020-7225(63)90027-2. Google Scholar

[16]

C. Truesdell and W. Noll, The Non-Linear Field Theories of Mechanics, in "Encyclopedia of Physics", Ⅲ/3, Springer, Berlin, 1965. Google Scholar

[17]

C. Truesdell and R. Toupin, The Classical Field Theories, in "Encyclopedia of Physics", Ⅲ/1, Springer, Berlin, 1960. Google Scholar

[18]

M. W. Zemansky, Heat and Thermodynamics, McGraw-Hill, New York, 1968.Google Scholar

[1]

Giovanna Bonfanti, Fabio Luterotti. A well-posedness result for irreversible phase transitions with a nonlinear heat flux law. Discrete & Continuous Dynamical Systems - S, 2013, 6 (2) : 331-351. doi: 10.3934/dcdss.2013.6.331

[2]

John Bissell, Brian Straughan. Discontinuity waves as tipping points: Applications to biological & sociological systems. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1911-1934. doi: 10.3934/dcdsb.2014.19.1911

[3]

Dorin Ieşan. Strain gradient theory of porous solids with initial stresses and initial heat flux. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 2169-2187. doi: 10.3934/dcdsb.2014.19.2169

[4]

Giovambattista Amendola, Mauro Fabrizio, John Murrough Golden, Adele Manes. Energy stability for thermo-viscous fluids with a fading memory heat flux. Evolution Equations & Control Theory, 2015, 4 (3) : 265-279. doi: 10.3934/eect.2015.4.265

[5]

Feimin Huang, Yi Wang, Tong Yang. Fluid dynamic limit to the Riemann Solutions of Euler equations: I. Superposition of rarefaction waves and contact discontinuity. Kinetic & Related Models, 2010, 3 (4) : 685-728. doi: 10.3934/krm.2010.3.685

[6]

Raul Borsche, Axel Klar, T. N. Ha Pham. Nonlinear flux-limited models for chemotaxis on networks. Networks & Heterogeneous Media, 2017, 12 (3) : 381-401. doi: 10.3934/nhm.2017017

[7]

Wen Shen. Traveling waves for conservation laws with nonlocal flux for traffic flow on rough roads. Networks & Heterogeneous Media, 2019, 14 (4) : 709-732. doi: 10.3934/nhm.2019028

[8]

Arthur Ramiandrisoa. Nonlinear heat equation: the radial case. Discrete & Continuous Dynamical Systems - A, 1999, 5 (4) : 849-870. doi: 10.3934/dcds.1999.5.849

[9]

D. Lannes. Consistency of the KP approximation. Conference Publications, 2003, 2003 (Special) : 517-525. doi: 10.3934/proc.2003.2003.517

[10]

Jana Kopfová. Thermodynamical consistency - a mystery or?. Discrete & Continuous Dynamical Systems - S, 2015, 8 (4) : 757-767. doi: 10.3934/dcdss.2015.8.757

[11]

Imre Csiszar and Paul C. Shields. Consistency of the BIC order estimator. Electronic Research Announcements, 1999, 5: 123-127.

[12]

Lan Qiao, Sining Zheng. Non-simultaneous blow-up for heat equations with positive-negative sources and coupled boundary flux. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1113-1129. doi: 10.3934/cpaa.2007.6.1113

[13]

Elena Kartashova. Nonlinear resonances of water waves. Discrete & Continuous Dynamical Systems - B, 2009, 12 (3) : 607-621. doi: 10.3934/dcdsb.2009.12.607

[14]

Chunlai Mu, Zhaoyin Xiang. Blowup behaviors for degenerate parabolic equations coupled via nonlinear boundary flux. Communications on Pure & Applied Analysis, 2007, 6 (2) : 487-503. doi: 10.3934/cpaa.2007.6.487

[15]

Sebastian Reich, Seoleun Shin. On the consistency of ensemble transform filter formulations. Journal of Computational Dynamics, 2014, 1 (1) : 177-189. doi: 10.3934/jcd.2014.1.177

[16]

Dominika Pilarczyk. Asymptotic stability of singular solution to nonlinear heat equation. Discrete & Continuous Dynamical Systems - A, 2009, 25 (3) : 991-1001. doi: 10.3934/dcds.2009.25.991

[17]

Andrey Shishkov, Laurent Véron. Propagation of singularities of nonlinear heat flow in fissured media. Communications on Pure & Applied Analysis, 2013, 12 (4) : 1769-1782. doi: 10.3934/cpaa.2013.12.1769

[18]

Noreen Sher Akbar, Dharmendra Tripathi, Zafar Hayat Khan. Numerical investigation of Cattanneo-Christov heat flux in CNT suspended nanofluid flow over a stretching porous surface with suction and injection. Discrete & Continuous Dynamical Systems - S, 2018, 11 (4) : 583-594. doi: 10.3934/dcdss.2018033

[19]

Margaret Beck. Stability of nonlinear waves: Pointwise estimates. Discrete & Continuous Dynamical Systems - S, 2017, 10 (2) : 191-211. doi: 10.3934/dcdss.2017010

[20]

Jerry Bona, Hongqiu Chen. Solitary waves in nonlinear dispersive systems. Discrete & Continuous Dynamical Systems - B, 2002, 2 (3) : 313-378. doi: 10.3934/dcdsb.2002.2.313

2018 Impact Factor: 1.048

Metrics

  • PDF downloads (64)
  • HTML views (380)
  • Cited by (0)

Other articles
by authors

[Back to Top]