We focus on the problem of shock wave formation in a model of blood flow along an elastic artery. We analyze the conditions under which this phenomenon can appear and we provide an estimation of the instant of shock formation. Numerical simulations of the model have been conducted using the Discontinuous Galerkin Finite Element Method. The results are consistent with certain phenomena observed by practitioners in patients with arteriopathies, and they could predict the possible formation of a shock wave in the aorta.
Citation: |
[1] |
K. Ando, T. Sanada, K. Inaba, J. Damazo, J. Shepherd, T. Colonius and C. Brennen, Shock propagation through a bubbly liquid in a deformable tube, Journal of Fluid Mechanics, 671 (2011), 339-363.
doi: 10.1017/S0022112010005707.![]() ![]() |
[2] |
S. Čanić and E. H. Kim, Mathematical analysis of the quasilinear effects in a hyperbolic model blood flow through compliant axi-symmetric vessels, Math. Method Appl. Sci., 26 (2003), 1161-1186.
doi: 10.1002/mma.407.![]() ![]() ![]() |
[3] |
S. Čanić, J. Tambača, G. Guidoboni, A. Mikelić, C. J. Hartley and D. Rosenstrauch, Modeling viscoelastic behavior of arterial walls and their interaction with pulsatile blood flow, SIAM J. Appl. Math., 67 (2006), 164-193.
doi: 10.1137/060651562.![]() ![]() ![]() |
[4] |
I. Christov, P. Jordan and C. Christov, Nonlinear acoustic propagation in homentropic perfect gases: A numerical study, Physics Letters A, 353 (2006), 273-280.
doi: 10.1016/j.physleta.2005.12.101.![]() ![]() |
[5] |
I. C. Christov, V. Cognet, T. C. Shidhore and H. A. Stone, Flow rate-pressure drop relation for deformable shallow microfluidic channels, Journal of Fluid Mechanics, 841 (2018), 267-286.
doi: 10.1017/jfm.2018.30.![]() ![]() ![]() |
[6] |
L. Cozijnsen, R. L. Braam, R. A. Waalewijn, M. A. Schepens, B. L. Loeys, M. F. van Oosterhout, D. Q. Barge-Schaapveld and B. J. Mulder, What is new in dilatation of the ascending aorta?, Circulation, 123 (2011), 924-928.
doi: 10.1161/CIRCULATIONAHA.110.949131.![]() ![]() |
[7] |
T. A. Crowley and V. Pizziconi, Isolation of plasma from whole blood using planar microfilters for lab-on-a-chip applications, Lab on a Chip, 5 (2005), 922-929.
doi: 10.1039/b502930a.![]() ![]() |
[8] |
V. Dolejš and M. Feistaner, Discontinuous Galerkin Method: Analysis and Applications to Compressible Flow, Springer, Cham, 2015.
doi: 10.1007/978-3-319-19267-3.![]() ![]() ![]() |
[9] |
C. T. Dotter, D. J. Roberts and I. Steinberg, Aortic length: Angiocardiographic measurements, Circulation, 2 (1950), 915-920.
doi: 10.1161/01.CIR.2.6.915.![]() ![]() |
[10] |
A. Elgarayhi, E. El-Shewy, A. A. Mahmoud and A. A. Elhakem, Propagation of nonlinear pressure waves in blood, ISRN Computational Biology, 2013 (2013), Article ID 436267, 5 pages.
doi: 10.1155/2013/436267.![]() ![]() |
[11] |
R. Erbel and H. Eggebrecht, Aortic dimensions and the risk of dissection, Heart, 92 (2006), 137-142.
doi: 10.1136/hrt.2004.055111.![]() ![]() |
[12] |
Y. C. Fung, Biomechanics: Circulation, Springer Science & Business Media, 2013.
![]() |
[13] |
J. E. Hall, Guyton and Hall Textbook of Medical Physiology E-Book, Elsevier Health Sciences, 13 edition, 2015.
![]() |
[14] |
P. Hunter, Numerical Simulation of Arterial Blood Flow, PhD thesis, ResearchSpace@ Auckland, 1972.
![]() |
[15] |
J. Keener and J. Sneyd, Mathematical Physiology, volume 8 of Interdisciplinary Applied Mathematics, Springer: New York, 1998.
![]() ![]() |
[16] |
P. S. Laplace, Traité de Mécanique Céleste, Courcier, 1805.
![]() |
[17] |
P. Lax, Hyperbolic systems of conservation laws ii, Communications on Pure and Applied Mathematics, 10 (1957), 537-566.
doi: 10.1002/cpa.3160100406.![]() ![]() ![]() |
[18] |
P. Lax, Development of singularities of solution of nonlinear hyperbolic partial differential equations, Journal of Mathematical Physics, 5 (1964), 611-613.
doi: 10.1063/1.1704154.![]() ![]() ![]() |
[19] |
S. S. Mao, N. Ahmadi, B. Shah, D. Beckmann, A. Chen, L. Ngo, F. R. Flores, Y. L. Gao and M. J. Budoff, Normal thoracic aorta diameter on cardiac computed tomography in healthy asymptomatic adults: impact of age and gender, Academic Radiology, 15 (2008), 827-834.
![]() |
[20] |
D. Mowat, N. Haites and J. Rawles, Aortic blood velocity measurement in healthy adult using a simple ultrasound technique, Cardiovascular Research, 17 (1983), 75-80.
doi: 10.1093/cvr/17.2.75.![]() ![]() |
[21] |
P. R. Painter, The velocity of the arterial pulse wave: A viscous-fluid shock wave in an elastic tube, Theoretical Biology and Medical Modelling, 5 (2008), p15.
doi: 10.1186/1742-4682-5-15.![]() ![]() |
[22] |
P. Perdikaris and G. Karniadakis, Fractional-order viscoelasticity in one-dimensional blood flow models, Ann. Biomed. Eng., 42 (2014), 1012-1023.
doi: 10.1007/s10439-014-0970-3.![]() ![]() |
[23] |
K. Perktold, M. Resch and H. Florian, Pulsatile non-newtonian flow characteristics in a three-dimensional human carotid bifurcation model, Journal of biomechanical engineering, 113 (1991), 464-475.
doi: 10.1115/1.2895428.![]() ![]() |
[24] |
G. Porenta, D. Young and T. Rogge, A finite-element model of blood flow in arteries including taper, branches, and obstructions, J. Biomech. Eng., 108 (1986), 161-167.
doi: 10.1115/1.3138596.![]() ![]() |
[25] |
J. K. Raines, M. Y. Jaffrin and A. H. Shapiro, A computer simulation of arterial dynamics in the human leg, J. Biomech., 7 (1974), 77-91.
doi: 10.1016/0021-9290(74)90072-4.![]() ![]() |
[26] |
C. Rodero, Analysis of blood flow in one dimensional elastic artery using Navier-Stokes conservation laws, Master's thesis, Universitat de València / Universitat Politècnica de València, 2017.
![]() |
[27] |
S. Sherwin, V. Franke, J. Peiró and K. Parker, One-dimensional modelling of a vascular network in space-time variables, J. Engrg. Math., 47 (2003), 217-250.
doi: 10.1023/B:ENGI.0000007979.32871.e2.![]() ![]() ![]() |
[28] |
S. J. Sherwin, L. Formaggia, J. Peiró and V. Franke, Computational modelling of 1D blood flow with variable mechanical properties and its application to the simulation of wave propagation in the human arterial system, Int. J. Numer. Methods Fluids, 43 (2003), 673-700.
doi: 10.1002/fld.543.![]() ![]() ![]() |
[29] |
R. Shoucri and M. Shoucri, Application of the method of characteristics for the study of shock waves in models of blood flow in the aorta, Cardiovascular Engineering, 7 (2007), 1-6.
![]() |
[30] |
T. Sochi, Flow of Navier-Stokes fluids in cylindrical elastic tubes, J. Appl. Fluid Mech., 8 (2015), 181-188.
![]() |
[31] |
E. F. Toro, Riemann solvers and numerical methods for fluid dynamics: A practical introduction, Springer-Verlag, Berlin, 2009.
doi: 10.1007/b79761.![]() ![]() ![]() |
[32] |
E. F. Toro, Brain venous haemodynamics, neurological diseases and mathematical modelling. a review, Appl. Math. Comput., 272 (2016), 542-579.
doi: 10.1016/j.amc.2015.06.066.![]() ![]() ![]() |
[33] |
N. Westerhof and A. Noordergraaf, Arterial viscoelasticity: A generalized model, J. Biomech., 3 (1970), 357-379.
doi: 10.1016/0021-9290(70)90036-9.![]() ![]() |
[34] |
R. J. Whittaker, M. Heil, O. E. Jensen and S. L. Waters, A rational derivation of a tube law from shell theory, Applied Mathematics, 63 (2010), 465-496.
doi: 10.1093/qjmam/hbq020.![]() ![]() ![]() |
[35] |
T. Young, Ⅲ. An essay on the cohesion of fluids, Philosophical Transactions of the Royal Society of London, 95 (1805), 65-87.
![]() |