This work is a natural continuation of an earlier one [
Citation: |
[1] | M. Boulanouar, On a Mathematical model with non-compact boundary conditions describing bacterial population, Trans. Theory. and Stat. Physics, 42 (2013), 99-130. doi: 10.1080/00411450.2013.866144. |
[2] | M. Boulanouar, Transport equation for growing bacterial populations (Ⅰ), Electron. J. Diff. Equ., 221 (2012), 1-25. |
[3] | M. Boulanouar, Un modèle de Rotenberg avec la loi à mémoire parfaite, C.R.A.S. Paris Série I Math., 327 (1998), 965-968. doi: 10.1016/S0764-4442(99)80161-X. |
[4] | M. Boulanouar, On a Mathematical model with non-compact boundary conditions describing bacterial population : Asynchronous Growth Property, Submitted |
[5] | C. V. M. van der Mee and P. Zweifel, A Fokker-Planck equation for growing cell populations, J. Math. Biol., 25 (1987), 61-72. doi: 10.1007/BF00275888. |
[6] | C. V. M. van der Mee, A transport equation modeling in cell growth, Stochastic Modeling in Biology (P. Tautu, Eds), Word Sci., Publishing, 1990,381–398. |
[7] | W. Desch, I. Lasiecka and W. Schappacher, Feedback boundary control problems for linear semigroups, Isr., J., Math., 51 91985), 177–207. doi: 10.1007/BF02772664. |
[8] | B. Pagter, Irreducible compact operators, Math. Z, 192 (1986), 149-153. doi: 10.1007/BF01162028. |
[9] | M. Rotenberg, Transport theory for growing cell populations, J. Theor. Biol., 103 (1983), 181-199. doi: 10.1016/0022-5193(83)90024-3. |