Example 6.1 | Example 6.2 | Example 6.3 | |
In this article, we implement the algorithm based on the convex integration result proved in [
Citation: |
Figure 2. Two corrugations in Example 3.1. The red detail is shown in Figure 3
Figure 5. Two corrugations in Figure 3.2. The red detail shown in Figure 6
Figure 8. The detail of Figure 7
Table 1.
Values of the defect
Example 6.1 | Example 6.2 | Example 6.3 | |
Table 2.
Values of
Example 6.1 | Example 6.2 | Example 6.3 | |
Table 3.
Values of
Example 6.1 | Example 6.2 | Example 6.3 | |
Table 4.
Values of
Example 6.1 | Example 6.2 | Example 6.3 | |
Table 5.
Values of
Example 6.1 | Example 6.2 | Example 6.3 | |
[1] | V. Borelli, S. Jabrane, F. Lazarus and B. Thibert, Isometric Embeddings of the Square Flat Torus in Ambient Space, Ensaios Matematicos, 2013. |
[2] | V. Borelli, S. Jabrane, F. Lazarus and B. Thibert, Flat tori in three-dimensional space and convex integration, Proc. of the National Acad. of Sciences, 109 (2012), 7218-7223. doi: 10.1073/pnas.1118478109. |
[3] | T. Buckmaster, C. De Lellis, P. Isett and L. Szekelyhidi Jr., Anomalous dissipation for $ 1/5 $-Hölder Euler flows, Annals of Mathematics, 182 (2015), 127-172. doi: 10.4007/annals.2015.182.1.3. |
[4] | S. Conti, C. De Lellis and L. Székelyhidi Jr., $ h $-principle and rigidity for $ \mathcal{C}^{1,\alpha} $ isometric embeddings, Nonlinear Partial Differential Equations, 7 (2012), 83-116. doi: 10.1007/978-3-642-25361-4_5. |
[5] | C. De Lellis and L. Székelyhidi Jr., The Euler equations as a differential inclusion, Ann. of Math. (2), 170 (2009), 1417-1436. doi: 10.4007/annals.2009.170.1417. |
[6] | C. De Lellis and L. Székelyhidi Jr., Dissipative continuous Euler flows, Invent. Math., 193 (2013), 377-407. doi: 10.1007/s00222-012-0429-9. |
[7] | M. Gromov, Partial Differential Relations, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 9. Springer-Verlag, Berlin, 1986. doi: 10.1007/978-3-662-02267-2. |
[8] | P. Isett, A proof of Onsager's conjecture, Ann. of Math. (2), 188 (2018), 871-963. doi: 10.4007/annals.2018.188.3.4. |
[9] | T. Iwaniec, On the concept of weak Jacobian and Hessian, Report Univ. Jyväskylä, 83 (2001), 181-205. |
[10] | R. L. Jerrard and M. R. Pakzad, Sobolev spaces of isometric immersions of arbitrary dimension and co-dimension, Annali di Matematica Pura ed Applicata, 196 (2017), 687-716. doi: 10.1007/s10231-016-0591-6. |
[11] | N. H. Kuiper, On $ \mathcal{C}^1 $-isometric imbeddings. Ⅰ, Ⅱ, Nederl. Akad. Wetensch. Proc. Ser. A., 58 (1955), 545–556,683–689. |
[12] | M. Lewicka, L. Mahadevan and M. R. Pakzad, The Monge-Ampère constraint: Matching of isometries, density and regularity and elastic theories of shallow shells, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, 34 (2017), 45-67. doi: 10.1016/j.anihpc.2015.08.005. |
[13] | M. Lewicka and M.R. Pakzad, Convex integration for the Monge-Ampère equation in two dimensions, Analysis and PDE, 10 (2017), 695-727. doi: 10.2140/apde.2017.10.695. |
[14] | M. Lewicka and M. R. Pakzad, Rigidity and Convexity of the Very Weak Solutions to the Monge-Ampère Equation, in preparation. |
[15] | Mpmath is a free (BSD licensed) Python library for real and complex floating-point arithmetic with arbitrary precision., It has been developed by Fredrik Johansson since 2007. http://mpmath.org/ |
[16] | J. Nash, The imbedding problem for Riemannian manifolds, Ann. Math., 63 (1956), 20-63. doi: 10.2307/1969989. |
[17] | J. Nash, $ \mathcal{C}^1 $ isometric imbeddings, Ann. Math., 60 (1954), 383-396. doi: 10.2307/1969840. |
[18] | M. R. Pakzad, On the Sobolev space of isometric immersions, J. Differential Geom., 66 (2004), 47-69. doi: 10.4310/jdg/1090415029. |
[19] | V. Šverák, On Regularity for the Monge-Ampère Equation without Convexity Assumptions, Heriot-Watt University, 1991. |