• Previous Article
    Convergence of the backward Euler scheme for the operator-valued Riccati differential equation with semi-definite data
  • EECT Home
  • This Issue
  • Next Article
    Visualization of the convex integration solutions to the Monge-Ampère equation
June  2019, 8(2): 301-313. doi: 10.3934/eect.2019016

Generation of semigroups for the thermoelastic plate equation with free boundary conditions

1. 

University of Konstanz, Department of Mathematics and Statistics, 78457 Konstanz, Germany

2. 

Department of Mathematical Sciences, School of Science and Engineering, Waseda University, Ohkobu 3-4-1, Shinjuku-ku, Tokyo 169-8555, Japan

Received  June 2018 Revised  October 2018 Published  March 2019

We consider the linear thermoelastic plate equations with free boundary conditions in uniform $ C^4 $-domains, which includes the half-space, bounded and exterior domains. We show that the corresponding operator generates an analytic semigroup in $ L^p $-spaces for all $ p\in(1, \infty) $ and has maximal $ L^q $-$ L^p $-regularity on finite time intervals. On bounded $ C^4 $-domains, we obtain exponential stability.

Citation: Robert Denk, Yoshihiro Shibata. Generation of semigroups for the thermoelastic plate equation with free boundary conditions. Evolution Equations & Control Theory, 2019, 8 (2) : 301-313. doi: 10.3934/eect.2019016
References:
[1]

I. Chueshov and I. Lasiecka, Von Karman Evolution Equations, Springer Monographs in Mathematics, Springer, New York, 2010, Well-posedness and long-time dynamics. doi: 10.1007/978-0-387-87712-9.  Google Scholar

[2]

R. Denk, M. Hieber and J. Prüss, $ \mathcal R $-boundedness, Fourier multipliers and problems of elliptic and parabolic type, Mem. Amer. Math. Soc., 166 (2003), viii+114pp. doi: 10.1090/memo/0788.  Google Scholar

[3]

R. Denk and R. Racke, $ L^p $-resolvent estimates and time decay for generalized thermoelastic plate equations, Electron. J. Differential Equations, No. 48, 16 pp(electronic).  Google Scholar

[4]

R. Denk and R. Schnaubelt, A structurally damped plate equation with Dirichlet–Neumann boundary conditions, J. Differential Equations, 259 (2015), 1323-1353.  doi: 10.1016/j.jde.2015.02.043.  Google Scholar

[5]

R. Denk and Y. Shibata, Maximal regularity for the thermoelastic plate equations with free boundary conditions, J. Evol. Equ., 17 (2017), 215-261.  doi: 10.1007/s00028-016-0367-x.  Google Scholar

[6]

Y. Enomoto and Y. Shibata, On the $ \mathcal R $-sectoriality and the initial boundary value problem for the viscous compressible fluid flow, Funkcial. Ekvac., 56 (2013), 441-505.  doi: 10.1619/fesi.56.441.  Google Scholar

[7]

M. Girardi and L. Weis, Criteria for R-boundedness of operator families, in Evolution Equations, vol. 234 of Lecture Notes in Pure and Appl. Math., Dekker, New York, 2003,203–221.  Google Scholar

[8]

J. U. Kim, On the energy decay of a linear thermoelastic bar and plate, SIAM J. Math. Anal., 23 (1992), 889-899.  doi: 10.1137/0523047.  Google Scholar

[9]

P. C. Kunstmann and L. Weis, Maximal $ L_p $-regularity for parabolic equations, Fourier multiplier theorems and $ H^\infty $-functional calculus, in Functional Analytic Methods for Evolution Equations, vol. 1855 of Lecture Notes in Math., Springer, Berlin, 2004, 65–311. doi: 10.1007/978-3-540-44653-8_2.  Google Scholar

[10]

J. E. Lagnese, Boundary Stabilization of Thin Plates, vol. 10 of SIAM Studies in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1989. doi: 10.1137/1.9781611970821.  Google Scholar

[11]

I. Lasiecka and R. Triggiani, Analyticity, and lack thereof, of thermo-elastic semigroups, in Control and Partial Differential Equations (Marseille-Luminy, 1997), vol. 4 of ESAIM Proc., Soc. Math. Appl. Indust., Paris, 1998,199–222(electronic). doi: 10.1051/proc:1998029.  Google Scholar

[12]

I. Lasiecka and R. Triggiani, Analyticity of thermo-elastic semigroups with free boundary conditions, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 27 (1998), 457–482(1999), URL http://www.numdam.org/item?id=ASNSP_1998_4_27_3-4_457_0.  Google Scholar

[13]

I. Lasiecka and M. Wilke, Maximal regularity and global existence of solutions to a quasilinear thermoelastic plate system, Discrete Contin. Dyn. Syst., 33 (2013), 5189-5202.  doi: 10.3934/dcds.2013.33.5189.  Google Scholar

[14]

K. Liu and Z. Liu, Exponential stability and analyticity of abstract linear thermoelastic systems, Z. Angew. Math. Phys., 48 (1997), 885-904.  doi: 10.1007/s000330050071.  Google Scholar

[15]

Z.-Y. Liu and M. Renardy, A note on the equations of a thermoelastic plate, Appl. Math. Lett., 8 (1995), 1-6.  doi: 10.1016/0893-9659(95)00020-Q.  Google Scholar

[16]

Z. Liu and J. Yong, Qualitative properties of certain $ C_0 $ semigroups arising in elastic systems with various dampings, Adv. Differential Equations, 3 (1998), 643-686.   Google Scholar

[17]

Z. Liu and S. Zheng, Exponential stability of the Kirchhoff plate with thermal or viscoelastic damping, Quart. Appl. Math., 55 (1997), 551-564.  doi: 10.1090/qam/1466148.  Google Scholar

[18]

J. E. Muñoz Rivera and R. Racke, Smoothing properties, decay, and global existence of solutions to nonlinear coupled systems of thermoelastic type, SIAM J. Math. Anal., 26 (1995), 1547-1563.  doi: 10.1137/S0036142993255058.  Google Scholar

[19]

Y. Naito, On the $ L_p $-$ L_q $ maximal regularity for the linear thermoelastic plate equation in a bounded domain, Math. Methods Appl. Sci., 32 (2009), 1609-1637.  doi: 10.1002/mma.1100.  Google Scholar

[20]

Y. Naito and Y. Shibata, On the $ L_p $ analytic semigroup associated with the linear thermoelastic plate equations in the half-space, J. Math. Soc. Japan, 61 (2009), 971–1011, URL http://projecteuclid.org/euclid.jmsj/1257520498. doi: 10.2969/jmsj/06140971.  Google Scholar

[21]

K. Schade and Y. Shibata, On strong dynamics of compressible nematic liquid crystals, SIAM J. Math. Anal., 47 (2015), 3963-3992.  doi: 10.1137/140970628.  Google Scholar

[22]

Y. Shibata, On the exponential decay of the energy of a linear thermoelastic plate, Mat. Apl. Comput., 13 (1994), 81-102.   Google Scholar

[23]

L. Weis, Operator-valued Fourier multiplier theorems and maximal $ L_p $-regularity, Math. Ann., 319 (2001), 735-758.  doi: 10.1007/PL00004457.  Google Scholar

show all references

References:
[1]

I. Chueshov and I. Lasiecka, Von Karman Evolution Equations, Springer Monographs in Mathematics, Springer, New York, 2010, Well-posedness and long-time dynamics. doi: 10.1007/978-0-387-87712-9.  Google Scholar

[2]

R. Denk, M. Hieber and J. Prüss, $ \mathcal R $-boundedness, Fourier multipliers and problems of elliptic and parabolic type, Mem. Amer. Math. Soc., 166 (2003), viii+114pp. doi: 10.1090/memo/0788.  Google Scholar

[3]

R. Denk and R. Racke, $ L^p $-resolvent estimates and time decay for generalized thermoelastic plate equations, Electron. J. Differential Equations, No. 48, 16 pp(electronic).  Google Scholar

[4]

R. Denk and R. Schnaubelt, A structurally damped plate equation with Dirichlet–Neumann boundary conditions, J. Differential Equations, 259 (2015), 1323-1353.  doi: 10.1016/j.jde.2015.02.043.  Google Scholar

[5]

R. Denk and Y. Shibata, Maximal regularity for the thermoelastic plate equations with free boundary conditions, J. Evol. Equ., 17 (2017), 215-261.  doi: 10.1007/s00028-016-0367-x.  Google Scholar

[6]

Y. Enomoto and Y. Shibata, On the $ \mathcal R $-sectoriality and the initial boundary value problem for the viscous compressible fluid flow, Funkcial. Ekvac., 56 (2013), 441-505.  doi: 10.1619/fesi.56.441.  Google Scholar

[7]

M. Girardi and L. Weis, Criteria for R-boundedness of operator families, in Evolution Equations, vol. 234 of Lecture Notes in Pure and Appl. Math., Dekker, New York, 2003,203–221.  Google Scholar

[8]

J. U. Kim, On the energy decay of a linear thermoelastic bar and plate, SIAM J. Math. Anal., 23 (1992), 889-899.  doi: 10.1137/0523047.  Google Scholar

[9]

P. C. Kunstmann and L. Weis, Maximal $ L_p $-regularity for parabolic equations, Fourier multiplier theorems and $ H^\infty $-functional calculus, in Functional Analytic Methods for Evolution Equations, vol. 1855 of Lecture Notes in Math., Springer, Berlin, 2004, 65–311. doi: 10.1007/978-3-540-44653-8_2.  Google Scholar

[10]

J. E. Lagnese, Boundary Stabilization of Thin Plates, vol. 10 of SIAM Studies in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1989. doi: 10.1137/1.9781611970821.  Google Scholar

[11]

I. Lasiecka and R. Triggiani, Analyticity, and lack thereof, of thermo-elastic semigroups, in Control and Partial Differential Equations (Marseille-Luminy, 1997), vol. 4 of ESAIM Proc., Soc. Math. Appl. Indust., Paris, 1998,199–222(electronic). doi: 10.1051/proc:1998029.  Google Scholar

[12]

I. Lasiecka and R. Triggiani, Analyticity of thermo-elastic semigroups with free boundary conditions, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 27 (1998), 457–482(1999), URL http://www.numdam.org/item?id=ASNSP_1998_4_27_3-4_457_0.  Google Scholar

[13]

I. Lasiecka and M. Wilke, Maximal regularity and global existence of solutions to a quasilinear thermoelastic plate system, Discrete Contin. Dyn. Syst., 33 (2013), 5189-5202.  doi: 10.3934/dcds.2013.33.5189.  Google Scholar

[14]

K. Liu and Z. Liu, Exponential stability and analyticity of abstract linear thermoelastic systems, Z. Angew. Math. Phys., 48 (1997), 885-904.  doi: 10.1007/s000330050071.  Google Scholar

[15]

Z.-Y. Liu and M. Renardy, A note on the equations of a thermoelastic plate, Appl. Math. Lett., 8 (1995), 1-6.  doi: 10.1016/0893-9659(95)00020-Q.  Google Scholar

[16]

Z. Liu and J. Yong, Qualitative properties of certain $ C_0 $ semigroups arising in elastic systems with various dampings, Adv. Differential Equations, 3 (1998), 643-686.   Google Scholar

[17]

Z. Liu and S. Zheng, Exponential stability of the Kirchhoff plate with thermal or viscoelastic damping, Quart. Appl. Math., 55 (1997), 551-564.  doi: 10.1090/qam/1466148.  Google Scholar

[18]

J. E. Muñoz Rivera and R. Racke, Smoothing properties, decay, and global existence of solutions to nonlinear coupled systems of thermoelastic type, SIAM J. Math. Anal., 26 (1995), 1547-1563.  doi: 10.1137/S0036142993255058.  Google Scholar

[19]

Y. Naito, On the $ L_p $-$ L_q $ maximal regularity for the linear thermoelastic plate equation in a bounded domain, Math. Methods Appl. Sci., 32 (2009), 1609-1637.  doi: 10.1002/mma.1100.  Google Scholar

[20]

Y. Naito and Y. Shibata, On the $ L_p $ analytic semigroup associated with the linear thermoelastic plate equations in the half-space, J. Math. Soc. Japan, 61 (2009), 971–1011, URL http://projecteuclid.org/euclid.jmsj/1257520498. doi: 10.2969/jmsj/06140971.  Google Scholar

[21]

K. Schade and Y. Shibata, On strong dynamics of compressible nematic liquid crystals, SIAM J. Math. Anal., 47 (2015), 3963-3992.  doi: 10.1137/140970628.  Google Scholar

[22]

Y. Shibata, On the exponential decay of the energy of a linear thermoelastic plate, Mat. Apl. Comput., 13 (1994), 81-102.   Google Scholar

[23]

L. Weis, Operator-valued Fourier multiplier theorems and maximal $ L_p $-regularity, Math. Ann., 319 (2001), 735-758.  doi: 10.1007/PL00004457.  Google Scholar

[1]

Tuoc Phan, Grozdena Todorova, Borislav Yordanov. Existence uniqueness and regularity theory for elliptic equations with complex-valued potentials. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1071-1099. doi: 10.3934/dcds.2020310

[2]

Ágota P. Horváth. Discrete diffusion semigroups associated with Jacobi-Dunkl and exceptional Jacobi polynomials. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021002

[3]

Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240

[4]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

[5]

Xing-Bin Pan. Variational and operator methods for Maxwell-Stokes system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3909-3955. doi: 10.3934/dcds.2020036

[6]

Ole Løseth Elvetun, Bjørn Fredrik Nielsen. A regularization operator for source identification for elliptic PDEs. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021006

[7]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

[8]

Michiel Bertsch, Flavia Smarrazzo, Andrea Terracina, Alberto Tesei. Signed Radon measure-valued solutions of flux saturated scalar conservation laws. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3143-3169. doi: 10.3934/dcds.2020041

[9]

Laure Cardoulis, Michel Cristofol, Morgan Morancey. A stability result for the diffusion coefficient of the heat operator defined on an unbounded guide. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020054

[10]

Claudia Lederman, Noemi Wolanski. An optimization problem with volume constraint for an inhomogeneous operator with nonstandard growth. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020391

[11]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[12]

Yoshitsugu Kabeya. Eigenvalues of the Laplace-Beltrami operator under the homogeneous Neumann condition on a large zonal domain in the unit sphere. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3529-3559. doi: 10.3934/dcds.2020040

[13]

Hongyan Guo. Automorphism group and twisted modules of the twisted Heisenberg-Virasoro vertex operator algebra. Electronic Research Archive, , () : -. doi: 10.3934/era.2021008

[14]

Guo Zhou, Yongquan Zhou, Ruxin Zhao. Hybrid social spider optimization algorithm with differential mutation operator for the job-shop scheduling problem. Journal of Industrial & Management Optimization, 2021, 17 (2) : 533-548. doi: 10.3934/jimo.2019122

[15]

Tomáš Oberhuber, Tomáš Dytrych, Kristina D. Launey, Daniel Langr, Jerry P. Draayer. Transformation of a Nucleon-Nucleon potential operator into its SU(3) tensor form using GPUs. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1111-1122. doi: 10.3934/dcdss.2020383

[16]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[17]

Neil S. Trudinger, Xu-Jia Wang. Quasilinear elliptic equations with signed measure. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 477-494. doi: 10.3934/dcds.2009.23.477

[18]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[19]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

[20]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

2019 Impact Factor: 0.953

Metrics

  • PDF downloads (113)
  • HTML views (417)
  • Cited by (0)

Other articles
by authors

[Back to Top]