-
Previous Article
Convergence of the backward Euler scheme for the operator-valued Riccati differential equation with semi-definite data
- EECT Home
- This Issue
-
Next Article
Visualization of the convex integration solutions to the Monge-Ampère equation
Generation of semigroups for the thermoelastic plate equation with free boundary conditions
1. | University of Konstanz, Department of Mathematics and Statistics, 78457 Konstanz, Germany |
2. | Department of Mathematical Sciences, School of Science and Engineering, Waseda University, Ohkobu 3-4-1, Shinjuku-ku, Tokyo 169-8555, Japan |
We consider the linear thermoelastic plate equations with free boundary conditions in uniform $ C^4 $-domains, which includes the half-space, bounded and exterior domains. We show that the corresponding operator generates an analytic semigroup in $ L^p $-spaces for all $ p\in(1, \infty) $ and has maximal $ L^q $-$ L^p $-regularity on finite time intervals. On bounded $ C^4 $-domains, we obtain exponential stability.
References:
[1] |
I. Chueshov and I. Lasiecka, Von Karman Evolution Equations, Springer Monographs in Mathematics, Springer, New York, 2010, Well-posedness and long-time dynamics.
doi: 10.1007/978-0-387-87712-9. |
[2] |
R. Denk, M. Hieber and J. Prüss, $ \mathcal R $-boundedness, Fourier multipliers and problems of elliptic and parabolic type, Mem. Amer. Math. Soc., 166 (2003), viii+114pp.
doi: 10.1090/memo/0788. |
[3] |
R. Denk and R. Racke, $ L^p $-resolvent estimates and time decay for generalized thermoelastic plate equations, Electron. J. Differential Equations, No. 48, 16 pp(electronic). |
[4] |
R. Denk and R. Schnaubelt,
A structurally damped plate equation with Dirichlet–Neumann boundary conditions, J. Differential Equations, 259 (2015), 1323-1353.
doi: 10.1016/j.jde.2015.02.043. |
[5] |
R. Denk and Y. Shibata,
Maximal regularity for the thermoelastic plate equations with free boundary conditions, J. Evol. Equ., 17 (2017), 215-261.
doi: 10.1007/s00028-016-0367-x. |
[6] |
Y. Enomoto and Y. Shibata,
On the $ \mathcal R $-sectoriality and the initial boundary value problem for the viscous compressible fluid flow, Funkcial. Ekvac., 56 (2013), 441-505.
doi: 10.1619/fesi.56.441. |
[7] |
M. Girardi and L. Weis, Criteria for R-boundedness of operator families, in Evolution Equations, vol. 234 of Lecture Notes in Pure and Appl. Math., Dekker, New York, 2003,203–221. |
[8] |
J. U. Kim,
On the energy decay of a linear thermoelastic bar and plate, SIAM J. Math. Anal., 23 (1992), 889-899.
doi: 10.1137/0523047. |
[9] |
P. C. Kunstmann and L. Weis, Maximal $ L_p $-regularity for parabolic equations, Fourier multiplier theorems and $ H^\infty $-functional calculus, in Functional Analytic Methods for Evolution Equations, vol. 1855 of Lecture Notes in Math., Springer, Berlin, 2004, 65–311.
doi: 10.1007/978-3-540-44653-8_2. |
[10] |
J. E. Lagnese, Boundary Stabilization of Thin Plates, vol. 10 of SIAM Studies in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1989.
doi: 10.1137/1.9781611970821. |
[11] |
I. Lasiecka and R. Triggiani, Analyticity, and lack thereof, of thermo-elastic semigroups, in Control and Partial Differential Equations (Marseille-Luminy, 1997), vol. 4 of ESAIM Proc., Soc. Math. Appl. Indust., Paris, 1998,199–222(electronic).
doi: 10.1051/proc:1998029. |
[12] |
I. Lasiecka and R. Triggiani, Analyticity of thermo-elastic semigroups with free boundary conditions, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 27 (1998), 457–482(1999), URL http://www.numdam.org/item?id=ASNSP_1998_4_27_3-4_457_0. |
[13] |
I. Lasiecka and M. Wilke,
Maximal regularity and global existence of solutions to a quasilinear thermoelastic plate system, Discrete Contin. Dyn. Syst., 33 (2013), 5189-5202.
doi: 10.3934/dcds.2013.33.5189. |
[14] |
K. Liu and Z. Liu,
Exponential stability and analyticity of abstract linear thermoelastic systems, Z. Angew. Math. Phys., 48 (1997), 885-904.
doi: 10.1007/s000330050071. |
[15] |
Z.-Y. Liu and M. Renardy,
A note on the equations of a thermoelastic plate, Appl. Math. Lett., 8 (1995), 1-6.
doi: 10.1016/0893-9659(95)00020-Q. |
[16] |
Z. Liu and J. Yong,
Qualitative properties of certain $ C_0 $ semigroups arising in elastic systems with various dampings, Adv. Differential Equations, 3 (1998), 643-686.
|
[17] |
Z. Liu and S. Zheng,
Exponential stability of the Kirchhoff plate with thermal or viscoelastic damping, Quart. Appl. Math., 55 (1997), 551-564.
doi: 10.1090/qam/1466148. |
[18] |
J. E. Muñoz Rivera and R. Racke,
Smoothing properties, decay, and global existence of solutions to nonlinear coupled systems of thermoelastic type, SIAM J. Math. Anal., 26 (1995), 1547-1563.
doi: 10.1137/S0036142993255058. |
[19] |
Y. Naito,
On the $ L_p $-$ L_q $ maximal regularity for the linear thermoelastic plate equation in a bounded domain, Math. Methods Appl. Sci., 32 (2009), 1609-1637.
doi: 10.1002/mma.1100. |
[20] |
Y. Naito and Y. Shibata, On the $ L_p $ analytic semigroup associated with the linear thermoelastic plate equations in the half-space, J. Math. Soc. Japan, 61 (2009), 971–1011, URL http://projecteuclid.org/euclid.jmsj/1257520498.
doi: 10.2969/jmsj/06140971. |
[21] |
K. Schade and Y. Shibata,
On strong dynamics of compressible nematic liquid crystals, SIAM J. Math. Anal., 47 (2015), 3963-3992.
doi: 10.1137/140970628. |
[22] |
Y. Shibata,
On the exponential decay of the energy of a linear thermoelastic plate, Mat. Apl. Comput., 13 (1994), 81-102.
|
[23] |
L. Weis,
Operator-valued Fourier multiplier theorems and maximal $ L_p $-regularity, Math. Ann., 319 (2001), 735-758.
doi: 10.1007/PL00004457. |
show all references
References:
[1] |
I. Chueshov and I. Lasiecka, Von Karman Evolution Equations, Springer Monographs in Mathematics, Springer, New York, 2010, Well-posedness and long-time dynamics.
doi: 10.1007/978-0-387-87712-9. |
[2] |
R. Denk, M. Hieber and J. Prüss, $ \mathcal R $-boundedness, Fourier multipliers and problems of elliptic and parabolic type, Mem. Amer. Math. Soc., 166 (2003), viii+114pp.
doi: 10.1090/memo/0788. |
[3] |
R. Denk and R. Racke, $ L^p $-resolvent estimates and time decay for generalized thermoelastic plate equations, Electron. J. Differential Equations, No. 48, 16 pp(electronic). |
[4] |
R. Denk and R. Schnaubelt,
A structurally damped plate equation with Dirichlet–Neumann boundary conditions, J. Differential Equations, 259 (2015), 1323-1353.
doi: 10.1016/j.jde.2015.02.043. |
[5] |
R. Denk and Y. Shibata,
Maximal regularity for the thermoelastic plate equations with free boundary conditions, J. Evol. Equ., 17 (2017), 215-261.
doi: 10.1007/s00028-016-0367-x. |
[6] |
Y. Enomoto and Y. Shibata,
On the $ \mathcal R $-sectoriality and the initial boundary value problem for the viscous compressible fluid flow, Funkcial. Ekvac., 56 (2013), 441-505.
doi: 10.1619/fesi.56.441. |
[7] |
M. Girardi and L. Weis, Criteria for R-boundedness of operator families, in Evolution Equations, vol. 234 of Lecture Notes in Pure and Appl. Math., Dekker, New York, 2003,203–221. |
[8] |
J. U. Kim,
On the energy decay of a linear thermoelastic bar and plate, SIAM J. Math. Anal., 23 (1992), 889-899.
doi: 10.1137/0523047. |
[9] |
P. C. Kunstmann and L. Weis, Maximal $ L_p $-regularity for parabolic equations, Fourier multiplier theorems and $ H^\infty $-functional calculus, in Functional Analytic Methods for Evolution Equations, vol. 1855 of Lecture Notes in Math., Springer, Berlin, 2004, 65–311.
doi: 10.1007/978-3-540-44653-8_2. |
[10] |
J. E. Lagnese, Boundary Stabilization of Thin Plates, vol. 10 of SIAM Studies in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1989.
doi: 10.1137/1.9781611970821. |
[11] |
I. Lasiecka and R. Triggiani, Analyticity, and lack thereof, of thermo-elastic semigroups, in Control and Partial Differential Equations (Marseille-Luminy, 1997), vol. 4 of ESAIM Proc., Soc. Math. Appl. Indust., Paris, 1998,199–222(electronic).
doi: 10.1051/proc:1998029. |
[12] |
I. Lasiecka and R. Triggiani, Analyticity of thermo-elastic semigroups with free boundary conditions, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 27 (1998), 457–482(1999), URL http://www.numdam.org/item?id=ASNSP_1998_4_27_3-4_457_0. |
[13] |
I. Lasiecka and M. Wilke,
Maximal regularity and global existence of solutions to a quasilinear thermoelastic plate system, Discrete Contin. Dyn. Syst., 33 (2013), 5189-5202.
doi: 10.3934/dcds.2013.33.5189. |
[14] |
K. Liu and Z. Liu,
Exponential stability and analyticity of abstract linear thermoelastic systems, Z. Angew. Math. Phys., 48 (1997), 885-904.
doi: 10.1007/s000330050071. |
[15] |
Z.-Y. Liu and M. Renardy,
A note on the equations of a thermoelastic plate, Appl. Math. Lett., 8 (1995), 1-6.
doi: 10.1016/0893-9659(95)00020-Q. |
[16] |
Z. Liu and J. Yong,
Qualitative properties of certain $ C_0 $ semigroups arising in elastic systems with various dampings, Adv. Differential Equations, 3 (1998), 643-686.
|
[17] |
Z. Liu and S. Zheng,
Exponential stability of the Kirchhoff plate with thermal or viscoelastic damping, Quart. Appl. Math., 55 (1997), 551-564.
doi: 10.1090/qam/1466148. |
[18] |
J. E. Muñoz Rivera and R. Racke,
Smoothing properties, decay, and global existence of solutions to nonlinear coupled systems of thermoelastic type, SIAM J. Math. Anal., 26 (1995), 1547-1563.
doi: 10.1137/S0036142993255058. |
[19] |
Y. Naito,
On the $ L_p $-$ L_q $ maximal regularity for the linear thermoelastic plate equation in a bounded domain, Math. Methods Appl. Sci., 32 (2009), 1609-1637.
doi: 10.1002/mma.1100. |
[20] |
Y. Naito and Y. Shibata, On the $ L_p $ analytic semigroup associated with the linear thermoelastic plate equations in the half-space, J. Math. Soc. Japan, 61 (2009), 971–1011, URL http://projecteuclid.org/euclid.jmsj/1257520498.
doi: 10.2969/jmsj/06140971. |
[21] |
K. Schade and Y. Shibata,
On strong dynamics of compressible nematic liquid crystals, SIAM J. Math. Anal., 47 (2015), 3963-3992.
doi: 10.1137/140970628. |
[22] |
Y. Shibata,
On the exponential decay of the energy of a linear thermoelastic plate, Mat. Apl. Comput., 13 (1994), 81-102.
|
[23] |
L. Weis,
Operator-valued Fourier multiplier theorems and maximal $ L_p $-regularity, Math. Ann., 319 (2001), 735-758.
doi: 10.1007/PL00004457. |
[1] |
Qi Lü, Xu Zhang. Operator-valued backward stochastic Lyapunov equations in infinite dimensions, and its application. Mathematical Control and Related Fields, 2018, 8 (1) : 337-381. doi: 10.3934/mcrf.2018014 |
[2] |
Yury Arlinskiĭ, Eduard Tsekanovskiĭ. Constant J-unitary factor and operator-valued transfer functions. Conference Publications, 2003, 2003 (Special) : 48-56. doi: 10.3934/proc.2003.2003.48 |
[3] |
Monika Eisenmann, Etienne Emmrich, Volker Mehrmann. Convergence of the backward Euler scheme for the operator-valued Riccati differential equation with semi-definite data. Evolution Equations and Control Theory, 2019, 8 (2) : 315-342. doi: 10.3934/eect.2019017 |
[4] |
Angela A. Albanese, Elisabetta M. Mangino. Analytic semigroups and some degenerate evolution equations defined on domains with corners. Discrete and Continuous Dynamical Systems, 2015, 35 (2) : 595-615. doi: 10.3934/dcds.2015.35.595 |
[5] |
Moncef Aouadi, Taoufik Moulahi. The controllability of a thermoelastic plate problem revisited. Evolution Equations and Control Theory, 2018, 7 (1) : 1-31. doi: 10.3934/eect.2018001 |
[6] |
Francesca Bucci, Igor Chueshov. Long-time dynamics of a coupled system of nonlinear wave and thermoelastic plate equations. Discrete and Continuous Dynamical Systems, 2008, 22 (3) : 557-586. doi: 10.3934/dcds.2008.22.557 |
[7] |
Jeremy LeCrone, Gieri Simonett. Continuous maximal regularity and analytic semigroups. Conference Publications, 2011, 2011 (Special) : 963-970. doi: 10.3934/proc.2011.2011.963 |
[8] |
Jiecheng Chen, Dashan Fan, Lijing Sun. Asymptotic estimates for unimodular Fourier multipliers on modulation spaces. Discrete and Continuous Dynamical Systems, 2012, 32 (2) : 467-485. doi: 10.3934/dcds.2012.32.467 |
[9] |
Lassi Roininen, Markku S. Lehtinen, Petteri Piiroinen, Ilkka I. Virtanen. Perfect radar pulse compression via unimodular fourier multipliers. Inverse Problems and Imaging, 2014, 8 (3) : 831-844. doi: 10.3934/ipi.2014.8.831 |
[10] |
Qing Hong, Guorong Hu. Molecular decomposition and a class of Fourier multipliers for bi-parameter modulation spaces. Communications on Pure and Applied Analysis, 2019, 18 (6) : 3103-3120. doi: 10.3934/cpaa.2019139 |
[11] |
Flank D. M. Bezerra, Vera L. Carbone, Marcelo J. D. Nascimento, Karina Schiabel. Pullback attractors for a class of non-autonomous thermoelastic plate systems. Discrete and Continuous Dynamical Systems - B, 2018, 23 (9) : 3553-3571. doi: 10.3934/dcdsb.2017214 |
[12] |
Irena Lasiecka, Mathias Wilke. Maximal regularity and global existence of solutions to a quasilinear thermoelastic plate system. Discrete and Continuous Dynamical Systems, 2013, 33 (11&12) : 5189-5202. doi: 10.3934/dcds.2013.33.5189 |
[13] |
Moncef Aouadi, Alain Miranville. Quasi-stability and global attractor in nonlinear thermoelastic diffusion plate with memory. Evolution Equations and Control Theory, 2015, 4 (3) : 241-263. doi: 10.3934/eect.2015.4.241 |
[14] |
Jorge J. Betancor, Alejandro J. Castro, Marta De León-Contreras. Variation operators for semigroups associated with Fourier-Bessel expansions. Communications on Pure and Applied Analysis, 2022, 21 (1) : 239-273. doi: 10.3934/cpaa.2021176 |
[15] |
Gary Froyland, Cecilia González-Tokman, Anthony Quas. Detecting isolated spectrum of transfer and Koopman operators with Fourier analytic tools. Journal of Computational Dynamics, 2014, 1 (2) : 249-278. doi: 10.3934/jcd.2014.1.249 |
[16] |
Barbara Brandolini, Francesco Chiacchio, Jeffrey J. Langford. Estimates for sums of eigenvalues of the free plate via the fourier transform. Communications on Pure and Applied Analysis, 2020, 19 (1) : 113-122. doi: 10.3934/cpaa.2020007 |
[17] |
Valentin Keyantuo, Louis Tebou, Mahamadi Warma. A Gevrey class semigroup for a thermoelastic plate model with a fractional Laplacian: Between the Euler-Bernoulli and Kirchhoff models. Discrete and Continuous Dynamical Systems, 2020, 40 (5) : 2875-2889. doi: 10.3934/dcds.2020152 |
[18] |
Ying Gao, Xinmin Yang, Jin Yang, Hong Yan. Scalarizations and Lagrange multipliers for approximate solutions in the vector optimization problems with set-valued maps. Journal of Industrial and Management Optimization, 2015, 11 (2) : 673-683. doi: 10.3934/jimo.2015.11.673 |
[19] |
Yong-Kum Cho. A quadratic Fourier representation of the Boltzmann collision operator with an application to the stability problem. Kinetic and Related Models, 2012, 5 (3) : 441-458. doi: 10.3934/krm.2012.5.441 |
[20] |
Okihiro Sawada. Analytic rates of solutions to the Euler equations. Discrete and Continuous Dynamical Systems - S, 2013, 6 (5) : 1409-1415. doi: 10.3934/dcdss.2013.6.1409 |
2020 Impact Factor: 1.081
Tools
Metrics
Other articles
by authors
[Back to Top]