June  2019, 8(2): 315-342. doi: 10.3934/eect.2019017

Convergence of the backward Euler scheme for the operator-valued Riccati differential equation with semi-definite data

Technische Universität Berlin, Institut für Mathematik, Straẞe des 17. Juni 136, 10623 Berlin, Germany

* Corresponding author

Received  May 2018 Revised  August 2018 Published  March 2019

Fund Project: The authors gratefully acknowledge financial support from the Deutsche Forschungsgemeinschaft through the Collaborative Research Center 901 "Control of self-organizing nonlinear systems: Theoretical methods and concepts of application" (projects A2, A8).

For initial value problems associated with operator-valued Riccati differential equations posed in the space of Hilbert–Schmidt operators existence of solutions is studied. An existence result known for algebraic Riccati equations is generalized and used to obtain the existence of a solution to the approximation of the problem via a backward Euler scheme. Weak and strong convergence of the sequence of approximate solutions is established permitting a large class of right-hand sides and initial data.

Citation: Monika Eisenmann, Etienne Emmrich, Volker Mehrmann. Convergence of the backward Euler scheme for the operator-valued Riccati differential equation with semi-definite data. Evolution Equations & Control Theory, 2019, 8 (2) : 315-342. doi: 10.3934/eect.2019017
References:
[1]

H. W. Alt, Linear Functional Analysis, Springer, London, 2016. doi: 10.1007/978-1-4471-7280-2.  Google Scholar

[2]

U. M. Ascher, R. Mattheij and R. Russell, Numerical Solution of Boundary Value Problems for Ordinary Differential Equations, SIAM Publications, Philadelphia, PA, 2nd edition, 1995. doi: 10.1137/1.9781611971231.  Google Scholar

[3]

V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, Noordhoff International Publishing, Leyden, 1976.  Google Scholar

[4]

V. Barbu, Nonlinear Differential Equations of Monotone Types in Banach Spaces, Springer, New York, 2010. doi: 10.1007/978-1-4419-5542-5.  Google Scholar

[5]

P. Benner and H. Mena, BDF methods for large-scale differential Riccati equations, Proc. of Mathematical Theory of Network and Systems, MTNS, 2004. Google Scholar

[6]

P. Benner and H. Mena, Numerical solution of the infinite-dimensional LQR-problem and the associated differential Riccati equations, Journal of Numerical Mathematics, 26 (2018), 1-20.  doi: 10.1515/jnma-2016-1039.  Google Scholar

[7]

J. Bergh and J. Löfström, Interpolation Spaces. An introduction, Springer, Berlin, 1976.  Google Scholar

[8]

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, New York, 2011.  Google Scholar

[9]

R. F. Curtain and A. J. Pritchard, Infinite Dimensional Linear Systems Theory, Springer, Berlin, 1978.  Google Scholar

[10]

G. Da Prato, Quelques résultats d'existence, unicité et régularité pour un problème de la théorie du contrôle, Journal de Mathématiques Pures et Appliquées, 52 (1973), 353–375.  Google Scholar

[11]

G. Da Prato and A. Ichikawa, Riccati equation with unbounded coefficients, Annali di Matematica Pura ed Applicata, 140 (1985), 209-221.  doi: 10.1007/BF01776850.  Google Scholar

[12]

G. Da PratoI. Lasiecka and R. Triggiani, A direct study of the Riccati equation arising in hyperbolic boundary control problems, Journal of Differential Equations, 64 (1986), 26-47.  doi: 10.1016/0022-0396(86)90069-0.  Google Scholar

[13]

E. DiBenedetto, Real Analysis, Birkhäuser, Bosten, 2002. doi: 10.1007/978-1-4612-0117-5.  Google Scholar

[14]

N. Dunford and J. Schwartz, Linear Operators Part Ⅰ: General Theory, Interscience Publishers, New York, 1957. Google Scholar

[15]

N. Dunford and J. Schwartz, Linear Operators Part Ⅱ: Spectral Theory, Interscience Publishers, New York, 2nd edition, 1963.  Google Scholar

[16]

F. Flandoli, Riccati equation arising in a boundary control problem with distributed parameters, SIAM Journal on Control and Optimization, 22 (1984), 76-86.  doi: 10.1137/0322006.  Google Scholar

[17]

F. Flandoli, On the direct solution of Riccati equations arising in boundary control theory, Annali di Matematica Pura ed Applicata, 163 (1993), 93-131.  doi: 10.1007/BF01759017.  Google Scholar

[18]

H. Gajewski, K. Gröger and K. Zacharias, Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen, Akademie-Verlag, Berlin, 1974.  Google Scholar

[19]

E. Hansen and T. Stillfjord, Convergence analysis for splitting of the abstract Riccati equation, SIAM Journal on Numerical Analysis, 52 (2014), 3128-3139.  doi: 10.1137/130935501.  Google Scholar

[20]

T. Kato, Perturbation Theory for Linear Operators, Springer, Berlin, 1995.  Google Scholar

[21]

I. Lasiecka and R. Triggiani, Dirichlet boundary control problem for parabolic equations with quadratic cost: Analyticity and Riccati's feedback synthesis, SIAM Journal on Control and Optimization, 21 (1983), 41-67.  doi: 10.1137/0321003.  Google Scholar

[22] I. Lasiecka and R. Triggiani, Control Theory for Partial Differential Equations: Continuous and Approximation Theories, Ⅰ: Abstract Parabolic Systems, Cambridge University Press, Cambridge, 2000.   Google Scholar
[23] I. Lasiecka and R. Triggiani, Control Theory for Partial Differential Equations: Continuous and Approximation Theories, Ⅱ: Abstract Hyperbolic-like Systems over a Finite Time Horizon., Cambridge University Press, Cambridge, 2000.  doi: 10.1017/CBO9780511574801.002.  Google Scholar
[24]

J. L. Lions, Optimal Control of Systems Governed by Partial Differential Equations, Springer, Berlin, 1971.  Google Scholar

[25] W. Reid, Riccati Differential Equation, Academic Press, New York, 1972.   Google Scholar
[26]

T. Roubíček, Nonlinear Partial Differential Equations with Applications, Birkhäuser, Basel, 2nd edition, 2013. doi: 10.1007/978-3-0348-0513-1.  Google Scholar

[27]

I. G. Rosen, Convergence of Galerkin approximations for operator Riccati equations – A nonlinear evolution equation approach, Journal of Mathematical Analysis and Applications, 155 (1991), 226-248.  doi: 10.1016/0022-247X(91)90035-X.  Google Scholar

[28]

B. Simon, Operator Theory. A Comprehensive Course in Analysis, Part 4, American Mathematical Society, Providence, RI, 2015. doi: 10.1090/simon/004.  Google Scholar

[29]

L. Tartar, Sur l'étude directe d'équations non linéaires intervenant en théorie du contrôle optimal, Journal of Functional Analysis, 17 (1974), 1-47.  doi: 10.1016/0022-1236(74)90002-0.  Google Scholar

[30]

L. Tartar, An Introduction to Navier-Stokes Equation and Oceanography, Springer, Berlin, 2006. doi: 10.1007/3-540-36545-1.  Google Scholar

[31]

R. Temam, Étude directe d'une équation d'évolution du type de Riccati, associée à des opérateurs non bornés, Comptes Rendus de l'Académie des Sciences, 268 (1969), 1335–1338.  Google Scholar

[32]

R. Temam, Sur l'équation de Riccati associeé à des opérateurs non bornés, en dimension infinie, Journal of Functional Analysis, 7 (1971), 85-115.  doi: 10.1016/0022-1236(71)90046-2.  Google Scholar

[33]

K. Yosida, Functional Analysis, Springer, Berlin, 6th edition, 1980.  Google Scholar

show all references

References:
[1]

H. W. Alt, Linear Functional Analysis, Springer, London, 2016. doi: 10.1007/978-1-4471-7280-2.  Google Scholar

[2]

U. M. Ascher, R. Mattheij and R. Russell, Numerical Solution of Boundary Value Problems for Ordinary Differential Equations, SIAM Publications, Philadelphia, PA, 2nd edition, 1995. doi: 10.1137/1.9781611971231.  Google Scholar

[3]

V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, Noordhoff International Publishing, Leyden, 1976.  Google Scholar

[4]

V. Barbu, Nonlinear Differential Equations of Monotone Types in Banach Spaces, Springer, New York, 2010. doi: 10.1007/978-1-4419-5542-5.  Google Scholar

[5]

P. Benner and H. Mena, BDF methods for large-scale differential Riccati equations, Proc. of Mathematical Theory of Network and Systems, MTNS, 2004. Google Scholar

[6]

P. Benner and H. Mena, Numerical solution of the infinite-dimensional LQR-problem and the associated differential Riccati equations, Journal of Numerical Mathematics, 26 (2018), 1-20.  doi: 10.1515/jnma-2016-1039.  Google Scholar

[7]

J. Bergh and J. Löfström, Interpolation Spaces. An introduction, Springer, Berlin, 1976.  Google Scholar

[8]

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, New York, 2011.  Google Scholar

[9]

R. F. Curtain and A. J. Pritchard, Infinite Dimensional Linear Systems Theory, Springer, Berlin, 1978.  Google Scholar

[10]

G. Da Prato, Quelques résultats d'existence, unicité et régularité pour un problème de la théorie du contrôle, Journal de Mathématiques Pures et Appliquées, 52 (1973), 353–375.  Google Scholar

[11]

G. Da Prato and A. Ichikawa, Riccati equation with unbounded coefficients, Annali di Matematica Pura ed Applicata, 140 (1985), 209-221.  doi: 10.1007/BF01776850.  Google Scholar

[12]

G. Da PratoI. Lasiecka and R. Triggiani, A direct study of the Riccati equation arising in hyperbolic boundary control problems, Journal of Differential Equations, 64 (1986), 26-47.  doi: 10.1016/0022-0396(86)90069-0.  Google Scholar

[13]

E. DiBenedetto, Real Analysis, Birkhäuser, Bosten, 2002. doi: 10.1007/978-1-4612-0117-5.  Google Scholar

[14]

N. Dunford and J. Schwartz, Linear Operators Part Ⅰ: General Theory, Interscience Publishers, New York, 1957. Google Scholar

[15]

N. Dunford and J. Schwartz, Linear Operators Part Ⅱ: Spectral Theory, Interscience Publishers, New York, 2nd edition, 1963.  Google Scholar

[16]

F. Flandoli, Riccati equation arising in a boundary control problem with distributed parameters, SIAM Journal on Control and Optimization, 22 (1984), 76-86.  doi: 10.1137/0322006.  Google Scholar

[17]

F. Flandoli, On the direct solution of Riccati equations arising in boundary control theory, Annali di Matematica Pura ed Applicata, 163 (1993), 93-131.  doi: 10.1007/BF01759017.  Google Scholar

[18]

H. Gajewski, K. Gröger and K. Zacharias, Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen, Akademie-Verlag, Berlin, 1974.  Google Scholar

[19]

E. Hansen and T. Stillfjord, Convergence analysis for splitting of the abstract Riccati equation, SIAM Journal on Numerical Analysis, 52 (2014), 3128-3139.  doi: 10.1137/130935501.  Google Scholar

[20]

T. Kato, Perturbation Theory for Linear Operators, Springer, Berlin, 1995.  Google Scholar

[21]

I. Lasiecka and R. Triggiani, Dirichlet boundary control problem for parabolic equations with quadratic cost: Analyticity and Riccati's feedback synthesis, SIAM Journal on Control and Optimization, 21 (1983), 41-67.  doi: 10.1137/0321003.  Google Scholar

[22] I. Lasiecka and R. Triggiani, Control Theory for Partial Differential Equations: Continuous and Approximation Theories, Ⅰ: Abstract Parabolic Systems, Cambridge University Press, Cambridge, 2000.   Google Scholar
[23] I. Lasiecka and R. Triggiani, Control Theory for Partial Differential Equations: Continuous and Approximation Theories, Ⅱ: Abstract Hyperbolic-like Systems over a Finite Time Horizon., Cambridge University Press, Cambridge, 2000.  doi: 10.1017/CBO9780511574801.002.  Google Scholar
[24]

J. L. Lions, Optimal Control of Systems Governed by Partial Differential Equations, Springer, Berlin, 1971.  Google Scholar

[25] W. Reid, Riccati Differential Equation, Academic Press, New York, 1972.   Google Scholar
[26]

T. Roubíček, Nonlinear Partial Differential Equations with Applications, Birkhäuser, Basel, 2nd edition, 2013. doi: 10.1007/978-3-0348-0513-1.  Google Scholar

[27]

I. G. Rosen, Convergence of Galerkin approximations for operator Riccati equations – A nonlinear evolution equation approach, Journal of Mathematical Analysis and Applications, 155 (1991), 226-248.  doi: 10.1016/0022-247X(91)90035-X.  Google Scholar

[28]

B. Simon, Operator Theory. A Comprehensive Course in Analysis, Part 4, American Mathematical Society, Providence, RI, 2015. doi: 10.1090/simon/004.  Google Scholar

[29]

L. Tartar, Sur l'étude directe d'équations non linéaires intervenant en théorie du contrôle optimal, Journal of Functional Analysis, 17 (1974), 1-47.  doi: 10.1016/0022-1236(74)90002-0.  Google Scholar

[30]

L. Tartar, An Introduction to Navier-Stokes Equation and Oceanography, Springer, Berlin, 2006. doi: 10.1007/3-540-36545-1.  Google Scholar

[31]

R. Temam, Étude directe d'une équation d'évolution du type de Riccati, associée à des opérateurs non bornés, Comptes Rendus de l'Académie des Sciences, 268 (1969), 1335–1338.  Google Scholar

[32]

R. Temam, Sur l'équation de Riccati associeé à des opérateurs non bornés, en dimension infinie, Journal of Functional Analysis, 7 (1971), 85-115.  doi: 10.1016/0022-1236(71)90046-2.  Google Scholar

[33]

K. Yosida, Functional Analysis, Springer, Berlin, 6th edition, 1980.  Google Scholar

[1]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[2]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[3]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

[4]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[5]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[6]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[7]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[8]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[9]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[10]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[11]

Thierry Horsin, Mohamed Ali Jendoubi. On the convergence to equilibria of a sequence defined by an implicit scheme. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020465

[12]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[13]

Mingjun Zhou, Jingxue Yin. Continuous subsonic-sonic flows in a two-dimensional semi-infinitely long nozzle. Electronic Research Archive, , () : -. doi: 10.3934/era.2020122

[14]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[15]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[16]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[17]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020076

[18]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[19]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[20]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020268

2019 Impact Factor: 0.953

Metrics

  • PDF downloads (104)
  • HTML views (402)
  • Cited by (0)

[Back to Top]