June  2019, 8(2): 315-342. doi: 10.3934/eect.2019017

Convergence of the backward Euler scheme for the operator-valued Riccati differential equation with semi-definite data

Technische Universität Berlin, Institut für Mathematik, Straẞe des 17. Juni 136, 10623 Berlin, Germany

* Corresponding author

Received  May 2018 Revised  August 2018 Published  March 2019

Fund Project: The authors gratefully acknowledge financial support from the Deutsche Forschungsgemeinschaft through the Collaborative Research Center 901 "Control of self-organizing nonlinear systems: Theoretical methods and concepts of application" (projects A2, A8).

For initial value problems associated with operator-valued Riccati differential equations posed in the space of Hilbert–Schmidt operators existence of solutions is studied. An existence result known for algebraic Riccati equations is generalized and used to obtain the existence of a solution to the approximation of the problem via a backward Euler scheme. Weak and strong convergence of the sequence of approximate solutions is established permitting a large class of right-hand sides and initial data.

Citation: Monika Eisenmann, Etienne Emmrich, Volker Mehrmann. Convergence of the backward Euler scheme for the operator-valued Riccati differential equation with semi-definite data. Evolution Equations & Control Theory, 2019, 8 (2) : 315-342. doi: 10.3934/eect.2019017
References:
[1]

H. W. Alt, Linear Functional Analysis, Springer, London, 2016. doi: 10.1007/978-1-4471-7280-2.  Google Scholar

[2]

U. M. Ascher, R. Mattheij and R. Russell, Numerical Solution of Boundary Value Problems for Ordinary Differential Equations, SIAM Publications, Philadelphia, PA, 2nd edition, 1995. doi: 10.1137/1.9781611971231.  Google Scholar

[3]

V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, Noordhoff International Publishing, Leyden, 1976.  Google Scholar

[4]

V. Barbu, Nonlinear Differential Equations of Monotone Types in Banach Spaces, Springer, New York, 2010. doi: 10.1007/978-1-4419-5542-5.  Google Scholar

[5]

P. Benner and H. Mena, BDF methods for large-scale differential Riccati equations, Proc. of Mathematical Theory of Network and Systems, MTNS, 2004. Google Scholar

[6]

P. Benner and H. Mena, Numerical solution of the infinite-dimensional LQR-problem and the associated differential Riccati equations, Journal of Numerical Mathematics, 26 (2018), 1-20.  doi: 10.1515/jnma-2016-1039.  Google Scholar

[7]

J. Bergh and J. Löfström, Interpolation Spaces. An introduction, Springer, Berlin, 1976.  Google Scholar

[8]

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, New York, 2011.  Google Scholar

[9]

R. F. Curtain and A. J. Pritchard, Infinite Dimensional Linear Systems Theory, Springer, Berlin, 1978.  Google Scholar

[10]

G. Da Prato, Quelques résultats d'existence, unicité et régularité pour un problème de la théorie du contrôle, Journal de Mathématiques Pures et Appliquées, 52 (1973), 353–375.  Google Scholar

[11]

G. Da Prato and A. Ichikawa, Riccati equation with unbounded coefficients, Annali di Matematica Pura ed Applicata, 140 (1985), 209-221.  doi: 10.1007/BF01776850.  Google Scholar

[12]

G. Da PratoI. Lasiecka and R. Triggiani, A direct study of the Riccati equation arising in hyperbolic boundary control problems, Journal of Differential Equations, 64 (1986), 26-47.  doi: 10.1016/0022-0396(86)90069-0.  Google Scholar

[13]

E. DiBenedetto, Real Analysis, Birkhäuser, Bosten, 2002. doi: 10.1007/978-1-4612-0117-5.  Google Scholar

[14]

N. Dunford and J. Schwartz, Linear Operators Part Ⅰ: General Theory, Interscience Publishers, New York, 1957. Google Scholar

[15]

N. Dunford and J. Schwartz, Linear Operators Part Ⅱ: Spectral Theory, Interscience Publishers, New York, 2nd edition, 1963.  Google Scholar

[16]

F. Flandoli, Riccati equation arising in a boundary control problem with distributed parameters, SIAM Journal on Control and Optimization, 22 (1984), 76-86.  doi: 10.1137/0322006.  Google Scholar

[17]

F. Flandoli, On the direct solution of Riccati equations arising in boundary control theory, Annali di Matematica Pura ed Applicata, 163 (1993), 93-131.  doi: 10.1007/BF01759017.  Google Scholar

[18]

H. Gajewski, K. Gröger and K. Zacharias, Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen, Akademie-Verlag, Berlin, 1974.  Google Scholar

[19]

E. Hansen and T. Stillfjord, Convergence analysis for splitting of the abstract Riccati equation, SIAM Journal on Numerical Analysis, 52 (2014), 3128-3139.  doi: 10.1137/130935501.  Google Scholar

[20]

T. Kato, Perturbation Theory for Linear Operators, Springer, Berlin, 1995.  Google Scholar

[21]

I. Lasiecka and R. Triggiani, Dirichlet boundary control problem for parabolic equations with quadratic cost: Analyticity and Riccati's feedback synthesis, SIAM Journal on Control and Optimization, 21 (1983), 41-67.  doi: 10.1137/0321003.  Google Scholar

[22] I. Lasiecka and R. Triggiani, Control Theory for Partial Differential Equations: Continuous and Approximation Theories, Ⅰ: Abstract Parabolic Systems, Cambridge University Press, Cambridge, 2000.   Google Scholar
[23] I. Lasiecka and R. Triggiani, Control Theory for Partial Differential Equations: Continuous and Approximation Theories, Ⅱ: Abstract Hyperbolic-like Systems over a Finite Time Horizon., Cambridge University Press, Cambridge, 2000.  doi: 10.1017/CBO9780511574801.002.  Google Scholar
[24]

J. L. Lions, Optimal Control of Systems Governed by Partial Differential Equations, Springer, Berlin, 1971.  Google Scholar

[25] W. Reid, Riccati Differential Equation, Academic Press, New York, 1972.   Google Scholar
[26]

T. Roubíček, Nonlinear Partial Differential Equations with Applications, Birkhäuser, Basel, 2nd edition, 2013. doi: 10.1007/978-3-0348-0513-1.  Google Scholar

[27]

I. G. Rosen, Convergence of Galerkin approximations for operator Riccati equations – A nonlinear evolution equation approach, Journal of Mathematical Analysis and Applications, 155 (1991), 226-248.  doi: 10.1016/0022-247X(91)90035-X.  Google Scholar

[28]

B. Simon, Operator Theory. A Comprehensive Course in Analysis, Part 4, American Mathematical Society, Providence, RI, 2015. doi: 10.1090/simon/004.  Google Scholar

[29]

L. Tartar, Sur l'étude directe d'équations non linéaires intervenant en théorie du contrôle optimal, Journal of Functional Analysis, 17 (1974), 1-47.  doi: 10.1016/0022-1236(74)90002-0.  Google Scholar

[30]

L. Tartar, An Introduction to Navier-Stokes Equation and Oceanography, Springer, Berlin, 2006. doi: 10.1007/3-540-36545-1.  Google Scholar

[31]

R. Temam, Étude directe d'une équation d'évolution du type de Riccati, associée à des opérateurs non bornés, Comptes Rendus de l'Académie des Sciences, 268 (1969), 1335–1338.  Google Scholar

[32]

R. Temam, Sur l'équation de Riccati associeé à des opérateurs non bornés, en dimension infinie, Journal of Functional Analysis, 7 (1971), 85-115.  doi: 10.1016/0022-1236(71)90046-2.  Google Scholar

[33]

K. Yosida, Functional Analysis, Springer, Berlin, 6th edition, 1980.  Google Scholar

show all references

References:
[1]

H. W. Alt, Linear Functional Analysis, Springer, London, 2016. doi: 10.1007/978-1-4471-7280-2.  Google Scholar

[2]

U. M. Ascher, R. Mattheij and R. Russell, Numerical Solution of Boundary Value Problems for Ordinary Differential Equations, SIAM Publications, Philadelphia, PA, 2nd edition, 1995. doi: 10.1137/1.9781611971231.  Google Scholar

[3]

V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, Noordhoff International Publishing, Leyden, 1976.  Google Scholar

[4]

V. Barbu, Nonlinear Differential Equations of Monotone Types in Banach Spaces, Springer, New York, 2010. doi: 10.1007/978-1-4419-5542-5.  Google Scholar

[5]

P. Benner and H. Mena, BDF methods for large-scale differential Riccati equations, Proc. of Mathematical Theory of Network and Systems, MTNS, 2004. Google Scholar

[6]

P. Benner and H. Mena, Numerical solution of the infinite-dimensional LQR-problem and the associated differential Riccati equations, Journal of Numerical Mathematics, 26 (2018), 1-20.  doi: 10.1515/jnma-2016-1039.  Google Scholar

[7]

J. Bergh and J. Löfström, Interpolation Spaces. An introduction, Springer, Berlin, 1976.  Google Scholar

[8]

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, New York, 2011.  Google Scholar

[9]

R. F. Curtain and A. J. Pritchard, Infinite Dimensional Linear Systems Theory, Springer, Berlin, 1978.  Google Scholar

[10]

G. Da Prato, Quelques résultats d'existence, unicité et régularité pour un problème de la théorie du contrôle, Journal de Mathématiques Pures et Appliquées, 52 (1973), 353–375.  Google Scholar

[11]

G. Da Prato and A. Ichikawa, Riccati equation with unbounded coefficients, Annali di Matematica Pura ed Applicata, 140 (1985), 209-221.  doi: 10.1007/BF01776850.  Google Scholar

[12]

G. Da PratoI. Lasiecka and R. Triggiani, A direct study of the Riccati equation arising in hyperbolic boundary control problems, Journal of Differential Equations, 64 (1986), 26-47.  doi: 10.1016/0022-0396(86)90069-0.  Google Scholar

[13]

E. DiBenedetto, Real Analysis, Birkhäuser, Bosten, 2002. doi: 10.1007/978-1-4612-0117-5.  Google Scholar

[14]

N. Dunford and J. Schwartz, Linear Operators Part Ⅰ: General Theory, Interscience Publishers, New York, 1957. Google Scholar

[15]

N. Dunford and J. Schwartz, Linear Operators Part Ⅱ: Spectral Theory, Interscience Publishers, New York, 2nd edition, 1963.  Google Scholar

[16]

F. Flandoli, Riccati equation arising in a boundary control problem with distributed parameters, SIAM Journal on Control and Optimization, 22 (1984), 76-86.  doi: 10.1137/0322006.  Google Scholar

[17]

F. Flandoli, On the direct solution of Riccati equations arising in boundary control theory, Annali di Matematica Pura ed Applicata, 163 (1993), 93-131.  doi: 10.1007/BF01759017.  Google Scholar

[18]

H. Gajewski, K. Gröger and K. Zacharias, Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen, Akademie-Verlag, Berlin, 1974.  Google Scholar

[19]

E. Hansen and T. Stillfjord, Convergence analysis for splitting of the abstract Riccati equation, SIAM Journal on Numerical Analysis, 52 (2014), 3128-3139.  doi: 10.1137/130935501.  Google Scholar

[20]

T. Kato, Perturbation Theory for Linear Operators, Springer, Berlin, 1995.  Google Scholar

[21]

I. Lasiecka and R. Triggiani, Dirichlet boundary control problem for parabolic equations with quadratic cost: Analyticity and Riccati's feedback synthesis, SIAM Journal on Control and Optimization, 21 (1983), 41-67.  doi: 10.1137/0321003.  Google Scholar

[22] I. Lasiecka and R. Triggiani, Control Theory for Partial Differential Equations: Continuous and Approximation Theories, Ⅰ: Abstract Parabolic Systems, Cambridge University Press, Cambridge, 2000.   Google Scholar
[23] I. Lasiecka and R. Triggiani, Control Theory for Partial Differential Equations: Continuous and Approximation Theories, Ⅱ: Abstract Hyperbolic-like Systems over a Finite Time Horizon., Cambridge University Press, Cambridge, 2000.  doi: 10.1017/CBO9780511574801.002.  Google Scholar
[24]

J. L. Lions, Optimal Control of Systems Governed by Partial Differential Equations, Springer, Berlin, 1971.  Google Scholar

[25] W. Reid, Riccati Differential Equation, Academic Press, New York, 1972.   Google Scholar
[26]

T. Roubíček, Nonlinear Partial Differential Equations with Applications, Birkhäuser, Basel, 2nd edition, 2013. doi: 10.1007/978-3-0348-0513-1.  Google Scholar

[27]

I. G. Rosen, Convergence of Galerkin approximations for operator Riccati equations – A nonlinear evolution equation approach, Journal of Mathematical Analysis and Applications, 155 (1991), 226-248.  doi: 10.1016/0022-247X(91)90035-X.  Google Scholar

[28]

B. Simon, Operator Theory. A Comprehensive Course in Analysis, Part 4, American Mathematical Society, Providence, RI, 2015. doi: 10.1090/simon/004.  Google Scholar

[29]

L. Tartar, Sur l'étude directe d'équations non linéaires intervenant en théorie du contrôle optimal, Journal of Functional Analysis, 17 (1974), 1-47.  doi: 10.1016/0022-1236(74)90002-0.  Google Scholar

[30]

L. Tartar, An Introduction to Navier-Stokes Equation and Oceanography, Springer, Berlin, 2006. doi: 10.1007/3-540-36545-1.  Google Scholar

[31]

R. Temam, Étude directe d'une équation d'évolution du type de Riccati, associée à des opérateurs non bornés, Comptes Rendus de l'Académie des Sciences, 268 (1969), 1335–1338.  Google Scholar

[32]

R. Temam, Sur l'équation de Riccati associeé à des opérateurs non bornés, en dimension infinie, Journal of Functional Analysis, 7 (1971), 85-115.  doi: 10.1016/0022-1236(71)90046-2.  Google Scholar

[33]

K. Yosida, Functional Analysis, Springer, Berlin, 6th edition, 1980.  Google Scholar

[1]

Yingdan Ji, Wen Tan. Global well-posedness of a 3D Stokes-Magneto equations with fractional magnetic diffusion. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3271-3278. doi: 10.3934/dcdsb.2020227

[2]

Masahiro Ikeda, Ziheng Tu, Kyouhei Wakasa. Small data blow-up of semi-linear wave equation with scattering dissipation and time-dependent mass. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021011

[3]

Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021023

[4]

Haili Qiao, Aijie Cheng. A fast high order method for time fractional diffusion equation with non-smooth data. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021073

[5]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[6]

Wolf-Jüergen Beyn, Janosch Rieger. The implicit Euler scheme for one-sided Lipschitz differential inclusions. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 409-428. doi: 10.3934/dcdsb.2010.14.409

[7]

Boris Kramer, John R. Singler. A POD projection method for large-scale algebraic Riccati equations. Numerical Algebra, Control & Optimization, 2016, 6 (4) : 413-435. doi: 10.3934/naco.2016018

[8]

Jiangxing Wang. Convergence analysis of an accurate and efficient method for nonlinear Maxwell's equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2429-2440. doi: 10.3934/dcdsb.2020185

[9]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[10]

Lunji Song, Wenya Qi, Kaifang Liu, Qingxian Gu. A new over-penalized weak galerkin finite element method. Part Ⅱ: Elliptic interface problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2581-2598. doi: 10.3934/dcdsb.2020196

[11]

Kaifang Liu, Lunji Song, Shan Zhao. A new over-penalized weak galerkin method. Part Ⅰ: Second-order elliptic problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2411-2428. doi: 10.3934/dcdsb.2020184

[12]

Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213

[13]

Prasanta Kumar Barik, Ankik Kumar Giri, Rajesh Kumar. Mass-conserving weak solutions to the coagulation and collisional breakage equation with singular rates. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021009

[14]

Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175

[15]

Abdulrazzaq T. Abed, Azzam S. Y. Aladool. Applying particle swarm optimization based on Padé approximant to solve ordinary differential equation. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2021008

[16]

Yuan Gao, Jian-Guo Liu, Tao Luo, Yang Xiang. Revisit of the Peierls-Nabarro model for edge dislocations in Hilbert space. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3177-3207. doi: 10.3934/dcdsb.2020224

[17]

J. Frédéric Bonnans, Justina Gianatti, Francisco J. Silva. On the convergence of the Sakawa-Shindo algorithm in stochastic control. Mathematical Control & Related Fields, 2016, 6 (3) : 391-406. doi: 10.3934/mcrf.2016008

[18]

Fernando P. da Costa, João T. Pinto, Rafael Sasportes. On the convergence to critical scaling profiles in submonolayer deposition models. Kinetic & Related Models, 2018, 11 (6) : 1359-1376. doi: 10.3934/krm.2018053

[19]

Alberto Bressan, Carlotta Donadello. On the convergence of viscous approximations after shock interactions. Discrete & Continuous Dynamical Systems, 2009, 23 (1&2) : 29-48. doi: 10.3934/dcds.2009.23.29

[20]

Caifang Wang, Tie Zhou. The order of convergence for Landweber Scheme with $\alpha,\beta$-rule. Inverse Problems & Imaging, 2012, 6 (1) : 133-146. doi: 10.3934/ipi.2012.6.133

2019 Impact Factor: 0.953

Metrics

  • PDF downloads (113)
  • HTML views (406)
  • Cited by (0)

[Back to Top]