• Previous Article
    Existence, blow-up and exponential decay of solutions for a porous-elastic system with damping and source terms
  • EECT Home
  • This Issue
  • Next Article
    Convergence of the backward Euler scheme for the operator-valued Riccati differential equation with semi-definite data
June  2019, 8(2): 343-357. doi: 10.3934/eect.2019018

Stability of the anisotropic Maxwell equations with a conductivity term

Department of Mathematics, Georgetown University, Washington, DC 20057, USA

Received  May 2018 Revised  September 2018 Published  March 2019

The dynamic Maxwell equations with a conductivity term are considered. Conditions for the exponential and strong stability of an initial-boundary value problem are given. The permeability and the permittivity are assumed to be $ 3\times 3 $ symmetric, positive definite tensors. A result concerning solutions of higher regularity is obtained along the way.

Citation: Matthias Eller. Stability of the anisotropic Maxwell equations with a conductivity term. Evolution Equations & Control Theory, 2019, 8 (2) : 343-357. doi: 10.3934/eect.2019018
References:
[1]

M. Belishev and A. Glasman, Boundary control of the Maxwell dynamical system: Lack of controllability by topological reasons, in Mathematical and Numerical Aspects of Wave Propagation—WAVES 2003, Springer, Berlin, 2003,177-182.  Google Scholar

[2]

J. Cagnol and M. Eller, Boundary regularity for Maxwell's equations with applications to shape optimization, J. Differential Equations, 250 (2011), 1114-1136.  doi: 10.1016/j.jde.2010.08.004.  Google Scholar

[3]

M. Cessenat, Mathematical Methods in Electromagnetism, vol. 41 of Series on Advances in Mathematics for Applied Sciences, World Scientific Publishing Co. Inc., River Edge, NJ, 1996, Linear theory and applications. doi: 10.1142/2938.  Google Scholar

[4]

R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology. Vol. 3, Springer-Verlag, Berlin, 1990, Spectral theory and applications, With the collaboration of Michel Artola and Michel Cessenat, Translated from the French by John C. Amson.  Google Scholar

[5]

W. DeschR. Grimmer and W. Schappacher, Some considerations for linear integro-differential equations, J. Math. Anal. Appl., 104 (1984), 219-234.  doi: 10.1016/0022-247X(84)90044-1.  Google Scholar

[6]

M. Eller and D. Toundykov, A global holmgren theorem for multidimensional hyperbolic partial differential equations, Applicable Analysis, 91 (2012), 69-90.  doi: 10.1080/00036811.2010.538685.  Google Scholar

[7]

M. M. Eller, Continuous observability for the anisotropic Maxwell system, Appl. Math. Optim., 55 (2007), 185-201.  doi: 10.1007/s00245-006-0886-x.  Google Scholar

[8]

M. M. Eller and M. Yamamoto, A Carleman inequality for the stationary anisotropic Maxwell system, J. Math. Pures Appl. (9), 86 (2006), 449-462.  doi: 10.1016/j.matpur.2006.10.004.  Google Scholar

[9]

N. Iwasaki, Local decay of solutions for symmetric hyperbolic systems with dissipative and coercive boundary conditions in exterior domains, Publ. Res. Inst. Math. Sci., 5 (1969), 193-218.  doi: 10.2977/prims/1195194630.  Google Scholar

[10] P. D. Lax and R. S. Phillips, Scattering Theory, Pure and Applied Mathematics, Vol. 26, Academic Press, New York-London, 1967.   Google Scholar
[11]

R. Leis, über die eindeutige Fortsetzbarkeit der Lösungen der Maxwellschen Gleichungen in anisotropen inhomogenen Medien, Bul. Inst. Politehn. Iașsi (N.S.), 14 (1968), 119-124.   Google Scholar

[12]

A. Majda and S. Osher, Initial-boundary value problems for hyperbolic equations with uniformly characteristic boundary, Comm. Pure Appl. Math., 28 (1975), 607-675.  doi: 10.1002/cpa.3160280504.  Google Scholar

[13]

C. S. Morawetz, The decay of solutions of the exterior initial-boundary value problem for the wave equation, Comm. Pure Appl. Math., 14 (1961), 561-568.  doi: 10.1002/cpa.3160140327.  Google Scholar

[14]

S. Nicaise and C. Pignotti, Internal stabilization of Maxwell's equations in heterogeneous media, Abstr. Appl. Anal., 2005,791-811. doi: 10.1155/AAA.2005.791.  Google Scholar

[15]

T. Ohkubo, Regularity of solutions to hyperbolic mixed problems with uniformly characteristic boundary, Hokkaido Math. J., 10 (1981), 93-123.  doi: 10.14492/hokmj/1381758116.  Google Scholar

[16]

A. Pazy, Semigroups of linear operators and applications to partial differential equations, vol. 44 of Applied Mathematical Sciences, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[17]

K. D. Phung, Contrôle et stabilisation d'ondes électromagnétiques, ESAIM Control Optim. Calc. Var., 5 (2000), 87-137.  doi: 10.1051/cocv:2000103.  Google Scholar

[18]

R. Picard and W. Zajaczkowski, Local existence of solutions of impedance initial-boundary value problem for non-linear Maxwell equations, Mathematical Methods in the Applied Sciences, 18 (1995), 169-199.  doi: 10.1002/mma.1670180302.  Google Scholar

[19]

J. Rauch, Hyperbolic Partial Differential Equations and Geometric Optics, vol. 133 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 2012. doi: 10.1090/gsm/133.  Google Scholar

[20]

J. Rauch and M. Taylor, Exponential decay of solutions to hyperbolic equations in bounded domains, Indiana Univ. Math. J., 24 (1974), 79-86, URL https://doi.org/10.1512/iumj.1974.24.24004. doi: 10.1512/iumj.1975.24.24004.  Google Scholar

[21]

J. B. Rauch and F. J. Massey Ⅲ, Differentiability of solutions to hyperbolic initial-boundary value problems, Trans. Amer. Math. Soc., 189 (1974), 303-318.  doi: 10.2307/1996861.  Google Scholar

[22]

V. A. Solonnikov, Overdetermined elliptic boundary value problems, Dokl. Akad. Nauk SSSR, 199 (1971), 279-281.   Google Scholar

[23]

M. Spitz, Local Wellposedness of Nonlinear Maxwell Equations, Karlsruhe Institute of Technology, https://doi.org/10.5445/IR/1000078030, 2017, Ph.D Thesis. Google Scholar

show all references

References:
[1]

M. Belishev and A. Glasman, Boundary control of the Maxwell dynamical system: Lack of controllability by topological reasons, in Mathematical and Numerical Aspects of Wave Propagation—WAVES 2003, Springer, Berlin, 2003,177-182.  Google Scholar

[2]

J. Cagnol and M. Eller, Boundary regularity for Maxwell's equations with applications to shape optimization, J. Differential Equations, 250 (2011), 1114-1136.  doi: 10.1016/j.jde.2010.08.004.  Google Scholar

[3]

M. Cessenat, Mathematical Methods in Electromagnetism, vol. 41 of Series on Advances in Mathematics for Applied Sciences, World Scientific Publishing Co. Inc., River Edge, NJ, 1996, Linear theory and applications. doi: 10.1142/2938.  Google Scholar

[4]

R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology. Vol. 3, Springer-Verlag, Berlin, 1990, Spectral theory and applications, With the collaboration of Michel Artola and Michel Cessenat, Translated from the French by John C. Amson.  Google Scholar

[5]

W. DeschR. Grimmer and W. Schappacher, Some considerations for linear integro-differential equations, J. Math. Anal. Appl., 104 (1984), 219-234.  doi: 10.1016/0022-247X(84)90044-1.  Google Scholar

[6]

M. Eller and D. Toundykov, A global holmgren theorem for multidimensional hyperbolic partial differential equations, Applicable Analysis, 91 (2012), 69-90.  doi: 10.1080/00036811.2010.538685.  Google Scholar

[7]

M. M. Eller, Continuous observability for the anisotropic Maxwell system, Appl. Math. Optim., 55 (2007), 185-201.  doi: 10.1007/s00245-006-0886-x.  Google Scholar

[8]

M. M. Eller and M. Yamamoto, A Carleman inequality for the stationary anisotropic Maxwell system, J. Math. Pures Appl. (9), 86 (2006), 449-462.  doi: 10.1016/j.matpur.2006.10.004.  Google Scholar

[9]

N. Iwasaki, Local decay of solutions for symmetric hyperbolic systems with dissipative and coercive boundary conditions in exterior domains, Publ. Res. Inst. Math. Sci., 5 (1969), 193-218.  doi: 10.2977/prims/1195194630.  Google Scholar

[10] P. D. Lax and R. S. Phillips, Scattering Theory, Pure and Applied Mathematics, Vol. 26, Academic Press, New York-London, 1967.   Google Scholar
[11]

R. Leis, über die eindeutige Fortsetzbarkeit der Lösungen der Maxwellschen Gleichungen in anisotropen inhomogenen Medien, Bul. Inst. Politehn. Iașsi (N.S.), 14 (1968), 119-124.   Google Scholar

[12]

A. Majda and S. Osher, Initial-boundary value problems for hyperbolic equations with uniformly characteristic boundary, Comm. Pure Appl. Math., 28 (1975), 607-675.  doi: 10.1002/cpa.3160280504.  Google Scholar

[13]

C. S. Morawetz, The decay of solutions of the exterior initial-boundary value problem for the wave equation, Comm. Pure Appl. Math., 14 (1961), 561-568.  doi: 10.1002/cpa.3160140327.  Google Scholar

[14]

S. Nicaise and C. Pignotti, Internal stabilization of Maxwell's equations in heterogeneous media, Abstr. Appl. Anal., 2005,791-811. doi: 10.1155/AAA.2005.791.  Google Scholar

[15]

T. Ohkubo, Regularity of solutions to hyperbolic mixed problems with uniformly characteristic boundary, Hokkaido Math. J., 10 (1981), 93-123.  doi: 10.14492/hokmj/1381758116.  Google Scholar

[16]

A. Pazy, Semigroups of linear operators and applications to partial differential equations, vol. 44 of Applied Mathematical Sciences, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[17]

K. D. Phung, Contrôle et stabilisation d'ondes électromagnétiques, ESAIM Control Optim. Calc. Var., 5 (2000), 87-137.  doi: 10.1051/cocv:2000103.  Google Scholar

[18]

R. Picard and W. Zajaczkowski, Local existence of solutions of impedance initial-boundary value problem for non-linear Maxwell equations, Mathematical Methods in the Applied Sciences, 18 (1995), 169-199.  doi: 10.1002/mma.1670180302.  Google Scholar

[19]

J. Rauch, Hyperbolic Partial Differential Equations and Geometric Optics, vol. 133 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 2012. doi: 10.1090/gsm/133.  Google Scholar

[20]

J. Rauch and M. Taylor, Exponential decay of solutions to hyperbolic equations in bounded domains, Indiana Univ. Math. J., 24 (1974), 79-86, URL https://doi.org/10.1512/iumj.1974.24.24004. doi: 10.1512/iumj.1975.24.24004.  Google Scholar

[21]

J. B. Rauch and F. J. Massey Ⅲ, Differentiability of solutions to hyperbolic initial-boundary value problems, Trans. Amer. Math. Soc., 189 (1974), 303-318.  doi: 10.2307/1996861.  Google Scholar

[22]

V. A. Solonnikov, Overdetermined elliptic boundary value problems, Dokl. Akad. Nauk SSSR, 199 (1971), 279-281.   Google Scholar

[23]

M. Spitz, Local Wellposedness of Nonlinear Maxwell Equations, Karlsruhe Institute of Technology, https://doi.org/10.5445/IR/1000078030, 2017, Ph.D Thesis. Google Scholar

[1]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020052

[2]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[3]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[4]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[5]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[6]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[7]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[8]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020267

[9]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[10]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[11]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[12]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[13]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[14]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[15]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[16]

Chao Xing, Jiaojiao Pan, Hong Luo. Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020275

[17]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[18]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031

[19]

Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020075

[20]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351

2019 Impact Factor: 0.953

Metrics

  • PDF downloads (126)
  • HTML views (488)
  • Cited by (3)

Other articles
by authors

[Back to Top]