• Previous Article
    A priori estimates for the 3D compressible free-boundary Euler equations with surface tension in the case of a liquid
  • EECT Home
  • This Issue
  • Next Article
    Asymptotic behavior of solutions to a higher-order KdV-type equation with critical nonlinearity
September  2019, 8(3): 543-565. doi: 10.3934/eect.2019026

A comparison principle for Hamilton-Jacobi equation with moving in time boundary

1. 

Normandie Univ, INSA de Rouen, LMI (EA 3226 - FR CNRS 3335), 76000 Rouen, France

2. 

685 Avenue de l'Université, 76801 St Etienne du Rouvray cedex, France

 

Received  May 2018 Revised  November 2018 Published  May 2019

In this paper we consider an Hamilton-Jacobi equation on a moving in time domain. The boundary is described by a $C^{1}$ function. We show how we derive this equation from the work of [26]. We only prove a comparison principle since the proof of other theoritical results can be found in [20]. At the end of the paper, we consider a short homogenization result in order to reinforce the traffic flow interpretation of the equation.

Citation: Nicolas Forcadel, Mamdouh Zaydan. A comparison principle for Hamilton-Jacobi equation with moving in time boundary. Evolution Equations & Control Theory, 2019, 8 (3) : 543-565. doi: 10.3934/eect.2019026
References:
[1]

Y. AchdouC. CamilliA. Cutrì and N. Tchou, Hamilton–Jacobi equations constrained on networks, Nonlinear Differential Equations and Applications NoDEA, 20 (2013), 413-445. doi: 10.1007/s00030-012-0158-1.

[2]

G. Barles, Nonlinear neumann boundary conditions for quasilinear degenerate elliptic equations and applications, Journal of Differential Equations, 154 (1999), 191-224. doi: 10.1006/jdeq.1998.3568.

[3]

G. Barles, An introduction to the theory of viscosity solutions for first-order hamilton-jacobi equations and applications, in Hamilton-Jacobi Equations: Approximations, Numerical Analysis and Applications, Springer, 2074 (2013), 49–109. doi: 10.1007/978-3-642-36433-4_2.

[4]

G. Barles, A. Briani, E. Chasseigne and C. Imbert, Flux-limited and classical viscosity solutions for regional control problems, ESAIM Control Optim. Calc. Var., 24 (2018), 1881–1906, arXiv: 1611.01977. doi: 10.1051/cocv/2017076.

[5]

G. Barles and P. Lions, Fully nonlinear Neumann type boundary conditions for first-order Hamilton–Jacobi equations, Nonlinear Analysis: Theory, Methods & Applications, 16 (1991), 143-153. doi: 10.1016/0362-546X(91)90165-W.

[6]

R. BorscheR. Colombo and M. Garavello, On the coupling of systems of hyperbolic conservation laws with ordinary differential equations, Nonlinearity, 23 (2010), 2749-2770. doi: 10.1088/0951-7715/23/11/002.

[7]

R. BorscheR. Colombo and M. Garavello, Mixed systems: ODEs–balance laws, Journal of Differential equations, 252 (2012), 2311-2338. doi: 10.1016/j.jde.2011.08.051.

[8]

G. Coclite and M. Garavello, Vanishing viscosity for mixed systems with moving boundaries, Journal of Functional Analysis, 264 (2013), 1664-1710. doi: 10.1016/j.jfa.2013.01.010.

[9]

R. M. Colombo and P. Goatin, A well posed conservation law with a variable unilateral constraint, Journal of Differential Equations, 234 (2007), 654-675. doi: 10.1016/j.jde.2006.10.014.

[10]

M. G. CrandallH. Ishii and P.-L. Lions, User's guide to viscosity solutions of second order partial differential equations, Bulletin of the American Mathematical Society, 27 (1992), 1-67. doi: 10.1090/S0273-0979-1992-00266-5.

[11]

C. F. Daganzo and J. A. Laval, Moving bottlenecks: A numerical method that converges in flows, Transportation Research Part B: Methodological, 39 (2005), 855-863. doi: 10.1016/j.trb.2004.10.004.

[12]

M. L. Delle Monache and P. Goatin, Scalar conservation laws with moving constraints arising in traffic flow modeling: An existence result, Journal of Differential Equations, 257 (2015), 4015-4029. doi: 10.1016/j.jde.2014.07.014.

[13]

A. FinoH. Ibrahim and R. Monneau, The Peierls–Nabarro model as a limit of a Frenkel–Kontorova model, Journal of Differential Equations, 252 (2012), 258-293. doi: 10.1016/j.jde.2011.08.007.

[14]

N. ForcadelW. Salazar and M. Zaydan, Homogenization of second order discrete model with local perturbation and application to traffic flow, Discrete and Continuous Dynamical Systems-Series A, 37 (2017), 1437-1487. doi: 10.3934/dcds.2017060.

[15]

N. ForcadelW. Salazar and M. Zaydan, Specified homogenization of a discrete traffic model leading to an effective junction condition, Communications on Pure & Applied Analysis, 17 (2018), 2173-2206. doi: 10.3934/cpaa.2018104.

[16]

G. GaliseC. Imbert and R. Monneau, A junction condition by specified homogenization and application to traffic lights, Analysis & PDE, 8 (2015), 1891-1929. doi: 10.2140/apde.2015.8.1891.

[17]

M. GaravelloR. NataliniB. Piccoli and A. Terracina, Conservation laws with discontinuous flux, NHM, 2 (2007), 159-179. doi: 10.3934/nhm.2007.2.159.

[18]

B. Greenshields, Ws. Channing, H. Miller and others, A Study of Traffic Capacity, , Highway research board proceedings, 1935.

[19]

J. Guerand, Classification of nonlinear boundary conditions for 1D nonconvex Hamilton-Jacobi equations, arXiv: 1609.08867, 2016.

[20]

C. Imbert and R. Monneau, Flux-limited solutions for quasi-convex Hamilton-Jacobi equations on networks, Annales Scientifiques de l'ENS, 50 (2017), 357-448. doi: 10.24033/asens.2323.

[21]

C. Imbert and R. Monneau, Quasi-convex Hamilton-Jacobi equations posed on junctions: The multi-dimensional case, Discrete and Continuous Dynamical Systems-Series A, 37 (2017), 6405-6435. doi: 10.3934/dcds.2017278.

[22]

C. ImbertR. Monneau and H. Zidani, A Hamilton-Jacobi approach to junction problems and application to traffic flows, ESAIM: Control, Optimisation and Calculus of Variations, 19 (2013), 129-166. doi: 10.1051/cocv/2012002.

[23]

H. Ishii and ot hers, Fully nonlinear oblique derivative problems for nonlinear second-order elliptic PDEs, Duke Math. J, 62 (1991), 633-661. doi: 10.1215/S0012-7094-91-06228-9.

[24]

C. LattanzioA. Maurizi and B. Piccoli, Moving bottlenecks in car traffic flow: A PDE-ODE coupled model, SIAM Journal on Mathematical Analysis, 43 (2011), 50-67. doi: 10.1137/090767224.

[25]

J. Lebacque and M. Khoshyaran, Modelling vehicular traffic flow on networks using macroscopic models, in Finite Volumes for Complex Applications II, (1999), 551–558.

[26]

J. Lebacque, and others, Introducing buses into first-order macroscopic traffic flow models, Transportation Research Record: Journal of the Transportation Research Board, (1998), 70–79. doi: 10.3141/1644-08.

[27]

P.-L. Lions and P. Souganidis, Viscosity solutions for junctions: well posedness and stability, Rendiconti Lincei-Matematica E Applicazioni, 27 (2016), 535-545. doi: 10.4171/RLM/747.

[28]

P.-L. Lions and P. Souganidis, Well posedness for multi-dimensional junction problems with Kirchoff-type conditions, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., 28 (2017), 807–816, arXiv: 1704.04001. doi: 10.4171/RLM/786.

show all references

References:
[1]

Y. AchdouC. CamilliA. Cutrì and N. Tchou, Hamilton–Jacobi equations constrained on networks, Nonlinear Differential Equations and Applications NoDEA, 20 (2013), 413-445. doi: 10.1007/s00030-012-0158-1.

[2]

G. Barles, Nonlinear neumann boundary conditions for quasilinear degenerate elliptic equations and applications, Journal of Differential Equations, 154 (1999), 191-224. doi: 10.1006/jdeq.1998.3568.

[3]

G. Barles, An introduction to the theory of viscosity solutions for first-order hamilton-jacobi equations and applications, in Hamilton-Jacobi Equations: Approximations, Numerical Analysis and Applications, Springer, 2074 (2013), 49–109. doi: 10.1007/978-3-642-36433-4_2.

[4]

G. Barles, A. Briani, E. Chasseigne and C. Imbert, Flux-limited and classical viscosity solutions for regional control problems, ESAIM Control Optim. Calc. Var., 24 (2018), 1881–1906, arXiv: 1611.01977. doi: 10.1051/cocv/2017076.

[5]

G. Barles and P. Lions, Fully nonlinear Neumann type boundary conditions for first-order Hamilton–Jacobi equations, Nonlinear Analysis: Theory, Methods & Applications, 16 (1991), 143-153. doi: 10.1016/0362-546X(91)90165-W.

[6]

R. BorscheR. Colombo and M. Garavello, On the coupling of systems of hyperbolic conservation laws with ordinary differential equations, Nonlinearity, 23 (2010), 2749-2770. doi: 10.1088/0951-7715/23/11/002.

[7]

R. BorscheR. Colombo and M. Garavello, Mixed systems: ODEs–balance laws, Journal of Differential equations, 252 (2012), 2311-2338. doi: 10.1016/j.jde.2011.08.051.

[8]

G. Coclite and M. Garavello, Vanishing viscosity for mixed systems with moving boundaries, Journal of Functional Analysis, 264 (2013), 1664-1710. doi: 10.1016/j.jfa.2013.01.010.

[9]

R. M. Colombo and P. Goatin, A well posed conservation law with a variable unilateral constraint, Journal of Differential Equations, 234 (2007), 654-675. doi: 10.1016/j.jde.2006.10.014.

[10]

M. G. CrandallH. Ishii and P.-L. Lions, User's guide to viscosity solutions of second order partial differential equations, Bulletin of the American Mathematical Society, 27 (1992), 1-67. doi: 10.1090/S0273-0979-1992-00266-5.

[11]

C. F. Daganzo and J. A. Laval, Moving bottlenecks: A numerical method that converges in flows, Transportation Research Part B: Methodological, 39 (2005), 855-863. doi: 10.1016/j.trb.2004.10.004.

[12]

M. L. Delle Monache and P. Goatin, Scalar conservation laws with moving constraints arising in traffic flow modeling: An existence result, Journal of Differential Equations, 257 (2015), 4015-4029. doi: 10.1016/j.jde.2014.07.014.

[13]

A. FinoH. Ibrahim and R. Monneau, The Peierls–Nabarro model as a limit of a Frenkel–Kontorova model, Journal of Differential Equations, 252 (2012), 258-293. doi: 10.1016/j.jde.2011.08.007.

[14]

N. ForcadelW. Salazar and M. Zaydan, Homogenization of second order discrete model with local perturbation and application to traffic flow, Discrete and Continuous Dynamical Systems-Series A, 37 (2017), 1437-1487. doi: 10.3934/dcds.2017060.

[15]

N. ForcadelW. Salazar and M. Zaydan, Specified homogenization of a discrete traffic model leading to an effective junction condition, Communications on Pure & Applied Analysis, 17 (2018), 2173-2206. doi: 10.3934/cpaa.2018104.

[16]

G. GaliseC. Imbert and R. Monneau, A junction condition by specified homogenization and application to traffic lights, Analysis & PDE, 8 (2015), 1891-1929. doi: 10.2140/apde.2015.8.1891.

[17]

M. GaravelloR. NataliniB. Piccoli and A. Terracina, Conservation laws with discontinuous flux, NHM, 2 (2007), 159-179. doi: 10.3934/nhm.2007.2.159.

[18]

B. Greenshields, Ws. Channing, H. Miller and others, A Study of Traffic Capacity, , Highway research board proceedings, 1935.

[19]

J. Guerand, Classification of nonlinear boundary conditions for 1D nonconvex Hamilton-Jacobi equations, arXiv: 1609.08867, 2016.

[20]

C. Imbert and R. Monneau, Flux-limited solutions for quasi-convex Hamilton-Jacobi equations on networks, Annales Scientifiques de l'ENS, 50 (2017), 357-448. doi: 10.24033/asens.2323.

[21]

C. Imbert and R. Monneau, Quasi-convex Hamilton-Jacobi equations posed on junctions: The multi-dimensional case, Discrete and Continuous Dynamical Systems-Series A, 37 (2017), 6405-6435. doi: 10.3934/dcds.2017278.

[22]

C. ImbertR. Monneau and H. Zidani, A Hamilton-Jacobi approach to junction problems and application to traffic flows, ESAIM: Control, Optimisation and Calculus of Variations, 19 (2013), 129-166. doi: 10.1051/cocv/2012002.

[23]

H. Ishii and ot hers, Fully nonlinear oblique derivative problems for nonlinear second-order elliptic PDEs, Duke Math. J, 62 (1991), 633-661. doi: 10.1215/S0012-7094-91-06228-9.

[24]

C. LattanzioA. Maurizi and B. Piccoli, Moving bottlenecks in car traffic flow: A PDE-ODE coupled model, SIAM Journal on Mathematical Analysis, 43 (2011), 50-67. doi: 10.1137/090767224.

[25]

J. Lebacque and M. Khoshyaran, Modelling vehicular traffic flow on networks using macroscopic models, in Finite Volumes for Complex Applications II, (1999), 551–558.

[26]

J. Lebacque, and others, Introducing buses into first-order macroscopic traffic flow models, Transportation Research Record: Journal of the Transportation Research Board, (1998), 70–79. doi: 10.3141/1644-08.

[27]

P.-L. Lions and P. Souganidis, Viscosity solutions for junctions: well posedness and stability, Rendiconti Lincei-Matematica E Applicazioni, 27 (2016), 535-545. doi: 10.4171/RLM/747.

[28]

P.-L. Lions and P. Souganidis, Well posedness for multi-dimensional junction problems with Kirchoff-type conditions, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., 28 (2017), 807–816, arXiv: 1704.04001. doi: 10.4171/RLM/786.

Figure 1.  Schematic representation of f (blue) and g (red)
Figure 2.  Schematic representation of H (blue) and F (red)
[1]

Guillaume Costeseque, Jean-Patrick Lebacque. Discussion about traffic junction modelling: Conservation laws VS Hamilton-Jacobi equations. Discrete & Continuous Dynamical Systems - S, 2014, 7 (3) : 411-433. doi: 10.3934/dcdss.2014.7.411

[2]

Mihai Bostan, Gawtum Namah. Time periodic viscosity solutions of Hamilton-Jacobi equations. Communications on Pure & Applied Analysis, 2007, 6 (2) : 389-410. doi: 10.3934/cpaa.2007.6.389

[3]

Olga Bernardi, Franco Cardin. Minimax and viscosity solutions of Hamilton-Jacobi equations in the convex case. Communications on Pure & Applied Analysis, 2006, 5 (4) : 793-812. doi: 10.3934/cpaa.2006.5.793

[4]

Kaizhi Wang, Jun Yan. Lipschitz dependence of viscosity solutions of Hamilton-Jacobi equations with respect to the parameter. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1649-1659. doi: 10.3934/dcds.2016.36.1649

[5]

Kai Zhao, Wei Cheng. On the vanishing contact structure for viscosity solutions of contact type Hamilton-Jacobi equations I: Cauchy problem. Discrete & Continuous Dynamical Systems - A, 2019, 39 (8) : 4345-4358. doi: 10.3934/dcds.2019176

[6]

Olga Bernardi, Franco Cardin. On $C^0$-variational solutions for Hamilton-Jacobi equations. Discrete & Continuous Dynamical Systems - A, 2011, 31 (2) : 385-406. doi: 10.3934/dcds.2011.31.385

[7]

Gawtum Namah, Mohammed Sbihi. A notion of extremal solutions for time periodic Hamilton-Jacobi equations. Discrete & Continuous Dynamical Systems - B, 2010, 13 (3) : 647-664. doi: 10.3934/dcdsb.2010.13.647

[8]

Gui-Qiang Chen, Bo Su. Discontinuous solutions for Hamilton-Jacobi equations: Uniqueness and regularity. Discrete & Continuous Dynamical Systems - A, 2003, 9 (1) : 167-192. doi: 10.3934/dcds.2003.9.167

[9]

David McCaffrey. A representational formula for variational solutions to Hamilton-Jacobi equations. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1205-1215. doi: 10.3934/cpaa.2012.11.1205

[10]

Eddaly Guerra, Héctor Sánchez-Morgado. Vanishing viscosity limits for space-time periodic Hamilton-Jacobi equations. Communications on Pure & Applied Analysis, 2014, 13 (1) : 331-346. doi: 10.3934/cpaa.2014.13.331

[11]

Nalini Anantharaman, Renato Iturriaga, Pablo Padilla, Héctor Sánchez-Morgado. Physical solutions of the Hamilton-Jacobi equation. Discrete & Continuous Dynamical Systems - B, 2005, 5 (3) : 513-528. doi: 10.3934/dcdsb.2005.5.513

[12]

Claudio Marchi. On the convergence of singular perturbations of Hamilton-Jacobi equations. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1363-1377. doi: 10.3934/cpaa.2010.9.1363

[13]

Isabeau Birindelli, J. Wigniolle. Homogenization of Hamilton-Jacobi equations in the Heisenberg group. Communications on Pure & Applied Analysis, 2003, 2 (4) : 461-479. doi: 10.3934/cpaa.2003.2.461

[14]

Alexander Quaas, Andrei Rodríguez. Analysis of the attainment of boundary conditions for a nonlocal diffusive Hamilton-Jacobi equation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 5221-5243. doi: 10.3934/dcds.2018231

[15]

Xia Li. Long-time asymptotic solutions of convex hamilton-jacobi equations depending on unknown functions. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5151-5162. doi: 10.3934/dcds.2017223

[16]

Thi Tuyen Nguyen. Large time behavior of solutions of local and nonlocal nondegenerate Hamilton-Jacobi equations with Ornstein-Uhlenbeck operator. Communications on Pure & Applied Analysis, 2019, 18 (3) : 999-1021. doi: 10.3934/cpaa.2019049

[17]

Laura Caravenna, Annalisa Cesaroni, Hung Vinh Tran. Preface: Recent developments related to conservation laws and Hamilton-Jacobi equations. Discrete & Continuous Dynamical Systems - S, 2018, 11 (5) : ⅰ-ⅲ. doi: 10.3934/dcdss.201805i

[18]

Fabio Camilli, Paola Loreti, Naoki Yamada. Systems of convex Hamilton-Jacobi equations with implicit obstacles and the obstacle problem. Communications on Pure & Applied Analysis, 2009, 8 (4) : 1291-1302. doi: 10.3934/cpaa.2009.8.1291

[19]

Yasuhiro Fujita, Katsushi Ohmori. Inequalities and the Aubry-Mather theory of Hamilton-Jacobi equations. Communications on Pure & Applied Analysis, 2009, 8 (2) : 683-688. doi: 10.3934/cpaa.2009.8.683

[20]

Emeric Bouin. A Hamilton-Jacobi approach for front propagation in kinetic equations. Kinetic & Related Models, 2015, 8 (2) : 255-280. doi: 10.3934/krm.2015.8.255

2017 Impact Factor: 1.049

Metrics

  • PDF downloads (26)
  • HTML views (47)
  • Cited by (0)

Other articles
by authors

[Back to Top]