We consider a nonlinear implicit evolution inclusion driven by a nonlinear, nonmonotone, time-varying set-valued map and defined in the framework of an evolution triple of Hilbert spaces. Using an approximation technique and a surjectivity result for parabolic operators of monotone type, we show the existence of a periodic solution.
Citation: |
[1] |
K. Andrews, K. Kuttler and M. Schillor, Second order evolution equations with dynamic boundary conditions, J. Math. Anal. Appl., 197 (1996), 781-795.
doi: 10.1006/jmaa.1996.0053.![]() ![]() ![]() |
[2] |
V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, Noordhoff, Leyden, The Netherlands, 1976.
doi: 10.1007/978-1-4615-4665-8_17.![]() ![]() ![]() |
[3] |
V. Barbu and A. Favini, Existence for implicit differential equations in Banach spaces, Atti Accad. Naz. Lincei Cl. Sci. Fiz. Mat. Natur. Rend. Mat. Appl., 3 (1992), 203-215.
![]() ![]() |
[4] |
V. Barbu and A. Favini, Existence for an implicit differential equation, Nonlinear Anal., 32 (1998), 33-40.
doi: 10.1016/S0362-546X(97)00450-1.![]() ![]() ![]() |
[5] |
E. DiBenedetto and R. Showalter, A pseudo-parabolic variational inequality and Stefan problem, Nonlinear Anal., 6 (1982), 279-291.
doi: 10.1016/0362-546X(82)90095-5.![]() ![]() ![]() |
[6] |
A. Favini and A. Yagi, Multivalued linear operators and degenerate evolution equations, Ann. Mat. Pura Appl., 163 (1993), 353-384.
doi: 10.1007/BF01759029.![]() ![]() ![]() |
[7] |
L. Gasinski and N. S. Papageorgiou, Nonlinear Analysis, Series in Mathematical Analysis and Applications, 9. Chapman & Hall/CRC, Boca Raton, FL, 2006.
![]() ![]() |
[8] |
L. Gasinski and N. S. Papageorgiou, Anti-periodic solutions for nonlinear evolution inclusions, J. E Equ., 18 (2018), 1025-1047.
doi: 10.1007/s00028-018-0431-9.![]() ![]() ![]() |
[9] |
S. Hu and N. S. Papageorgiou, Handbook of Multivalued Analysis. Volume Ⅰ: Theory, Mathematics and its Applications, 419, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1997.
doi: 10.1007/978-1-4615-6359-4.![]() ![]() ![]() |
[10] |
J.-L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires, Dunod, Gauthier-Villars, Paris, 1969.
![]() ![]() |
[11] |
Z. Liu, Existence for implicit differential equations with nonmonotone perturbations, Israel J. Math., 129 (2002), 363-372.
doi: 10.1007/BF02773170.![]() ![]() ![]() |
[12] |
N.S. Papageorgiou, F. Papalini and F. Renzacci, Existence of solutions and periodic solutions for nonlinear evolution inclusions, Rend. Circ. Mat. Palermo, 48 (1999), 341-364.
doi: 10.1007/BF02857308.![]() ![]() ![]() |
[13] |
N. S. Papageorgiou and V. D. Rădulescu, Periodic solutions for time-dependent subdifferential evolution inclusions, Evol. Equ. Control Theory, 6 (2017), 277-297.
doi: 10.3934/eect.2017015.![]() ![]() ![]() |
[14] |
N. S. Papageorgiou, V. D. Rădulescu and D. D. Repovš, Sensitivity analysis for optimal control problems governed by nonlinear evolution inclusions, Adv. Nonlinear Anal., 6 (2017), 199-235.
doi: 10.1515/anona-2016-0096.![]() ![]() ![]() |
[15] |
R. Showalter, Monotone Operators in Banach Spaces and Nonlinear Partial Differential Equations, Math. Surveys and Monographs, 49, American Math. Soc., Providence, RI, 1997.
![]() ![]() |
[16] |
E. Zeidler, Nonlinear Functional Analysis and its Applications Ⅱ/B, Springer, New York, 1990.
doi: 10.1007/978-1-4612-0985-0.![]() ![]() ![]() |