December  2019, 8(4): 687-694. doi: 10.3934/eect.2019032

Simultaneous controllability of two vibrating strings with variable coefficients

1. 

University of Tunis El Manar, Faculty of Sciences of Tunis, Tunisia

2. 

University of Carthage, Polytechnic School of Tunisia, Tunisia

Received  January 2018 Revised  April 2019 Published  June 2019

We study the simultaneous exact controllability of two vibrating strings with variable physical coefficients and controlled from a common endpoint. We give sufficient conditions on the physical coefficients for which the eigenfrequencies of both systems do not coincide and the associated spectral gap is uniformly positive. Under these conditions, we show that these systems are simultaneously exactly controllable.

Citation: Jamel Ben Amara, Emna Beldi. Simultaneous controllability of two vibrating strings with variable coefficients. Evolution Equations & Control Theory, 2019, 8 (4) : 687-694. doi: 10.3934/eect.2019032
References:
[1]

S. Avdonin, Simultaneous controllability of several elastic strings, Proc. CD of the Fourteenth International Symposium of Mathematical Theory of Networks and Systems, Perpignan, France, (2000), 19–23.http://www.math.ucsd.edu/ ~helton/MTNSHISTORY/CONTENTS/2000PERPIGNAN/CDROM/articles/B169.pdf. Google Scholar

[2]

S. Avdonin and M. Tucsnak, Simultaneous controllability in sharp time for two elastic strings, ESAIM: COCV, 6 (2001), 259-273.  doi: 10.1051/cocv:2001110.  Google Scholar

[3]

S. Avdonin and W. Moran, Simultaneous control problems for systems of elastic strings and beams, Systems and Control Letters, 44 (2001), 147-155.  doi: 10.1016/S0167-6911(01)00137-2.  Google Scholar

[4]

S. Avdonin and W. Moran, Ingham-type inequalities and Riesz bases of divided differences, Int. J. Appl. Math. Comput. Sci., 11 (2001), 803–820. https://www.researchgate.net/profile/Sergei_Avdonin/publication/265116566_Ingham-type_inequalities_and_Riesz_bases_of_divided_differences/links/546b80e70cf2397f7831c25b/Ingham-type-inequalities-and-Riesz-bases-of-divided-differences.pdf. Google Scholar

[5]

C. Baiocchi, V. Komornik and P. Loreti, Ingham type theorems and applications to control theory, Boll. Un. Mat. Ital., B2 (1999), 33–63.https://eudml.org/doc/194750.  Google Scholar

[6]

C. BaiocchiV. Komornik and P. Loreti, Généralisation d'un théorème de Beurling et application à la théorie de contrôle, C. R. Acad. Sci. Paris Ser. I Math., 330 (2000), 281-286.  doi: 10.1016/S0764-4442(00)00116-6.  Google Scholar

[7]

C. BaiocchiV. Komornik and P. Loreti, Ingham-Beurling type theorems with weakened gap conditions, Acta Math. Hungar., 97 (2002), 55-95.  doi: 10.1023/A:1020806811956.  Google Scholar

[8]

J. N. J. W. L. Carleson and P. Malliavin, editors, The collected works of Arne Beurling, Volume 2, Birkhäuser, 1989. https://projecteuclid.org/euclid.die/1356060673 Google Scholar

[9]

M. S. P. Eastham, Theory of Ordinary Differential Equations, Van Nostrand ReinholdCompany, London, 1970. Google Scholar

[10]

M. V. Fedoryuk, Asymptotic Analysis, Springer-Verlag, Berlin, 1993. doi: 10.1007/978-3-642-58016-1.  Google Scholar

[11]

B. M. Levitan and I. S. Sargsjan, Introduction to Spectral Theory: Selfadjoint Ordinary Differential Operators, Americain Mathematical Society, Translation of Mathematical Monographs, 39, 197).  Google Scholar

[12]

J. L. Lions, Contrôlabilité Exacte, Perturbations et Stabilisation de Systèmes Distribués, Tome 1 and 2, Masson, RMA, Paris, 1988.  Google Scholar

[13]

D. L. Russel, The Dirichlet-Neumann boundary control problem associated with Maxwell's equations in a cylindrical region, SIAM J. Cont. Optim., 24 (1986), 199-229.  doi: 10.1137/0324012.  Google Scholar

[14]

M. Tucsnak and G. Weiss, Simultaneous exact controllability and some applications, SIAM J. Cont. Optim., 38 (2000), 1408-1427.  doi: 10.1137/S0363012999352716.  Google Scholar

show all references

References:
[1]

S. Avdonin, Simultaneous controllability of several elastic strings, Proc. CD of the Fourteenth International Symposium of Mathematical Theory of Networks and Systems, Perpignan, France, (2000), 19–23.http://www.math.ucsd.edu/ ~helton/MTNSHISTORY/CONTENTS/2000PERPIGNAN/CDROM/articles/B169.pdf. Google Scholar

[2]

S. Avdonin and M. Tucsnak, Simultaneous controllability in sharp time for two elastic strings, ESAIM: COCV, 6 (2001), 259-273.  doi: 10.1051/cocv:2001110.  Google Scholar

[3]

S. Avdonin and W. Moran, Simultaneous control problems for systems of elastic strings and beams, Systems and Control Letters, 44 (2001), 147-155.  doi: 10.1016/S0167-6911(01)00137-2.  Google Scholar

[4]

S. Avdonin and W. Moran, Ingham-type inequalities and Riesz bases of divided differences, Int. J. Appl. Math. Comput. Sci., 11 (2001), 803–820. https://www.researchgate.net/profile/Sergei_Avdonin/publication/265116566_Ingham-type_inequalities_and_Riesz_bases_of_divided_differences/links/546b80e70cf2397f7831c25b/Ingham-type-inequalities-and-Riesz-bases-of-divided-differences.pdf. Google Scholar

[5]

C. Baiocchi, V. Komornik and P. Loreti, Ingham type theorems and applications to control theory, Boll. Un. Mat. Ital., B2 (1999), 33–63.https://eudml.org/doc/194750.  Google Scholar

[6]

C. BaiocchiV. Komornik and P. Loreti, Généralisation d'un théorème de Beurling et application à la théorie de contrôle, C. R. Acad. Sci. Paris Ser. I Math., 330 (2000), 281-286.  doi: 10.1016/S0764-4442(00)00116-6.  Google Scholar

[7]

C. BaiocchiV. Komornik and P. Loreti, Ingham-Beurling type theorems with weakened gap conditions, Acta Math. Hungar., 97 (2002), 55-95.  doi: 10.1023/A:1020806811956.  Google Scholar

[8]

J. N. J. W. L. Carleson and P. Malliavin, editors, The collected works of Arne Beurling, Volume 2, Birkhäuser, 1989. https://projecteuclid.org/euclid.die/1356060673 Google Scholar

[9]

M. S. P. Eastham, Theory of Ordinary Differential Equations, Van Nostrand ReinholdCompany, London, 1970. Google Scholar

[10]

M. V. Fedoryuk, Asymptotic Analysis, Springer-Verlag, Berlin, 1993. doi: 10.1007/978-3-642-58016-1.  Google Scholar

[11]

B. M. Levitan and I. S. Sargsjan, Introduction to Spectral Theory: Selfadjoint Ordinary Differential Operators, Americain Mathematical Society, Translation of Mathematical Monographs, 39, 197).  Google Scholar

[12]

J. L. Lions, Contrôlabilité Exacte, Perturbations et Stabilisation de Systèmes Distribués, Tome 1 and 2, Masson, RMA, Paris, 1988.  Google Scholar

[13]

D. L. Russel, The Dirichlet-Neumann boundary control problem associated with Maxwell's equations in a cylindrical region, SIAM J. Cont. Optim., 24 (1986), 199-229.  doi: 10.1137/0324012.  Google Scholar

[14]

M. Tucsnak and G. Weiss, Simultaneous exact controllability and some applications, SIAM J. Cont. Optim., 38 (2000), 1408-1427.  doi: 10.1137/S0363012999352716.  Google Scholar

[1]

Jong Yoon Hyun, Boran Kim, Minwon Na. Construction of minimal linear codes from multi-variable functions. Advances in Mathematics of Communications, 2021, 15 (2) : 227-240. doi: 10.3934/amc.2020055

[2]

Patrick Martinez, Judith Vancostenoble. Lipschitz stability for the growth rate coefficients in a nonlinear Fisher-KPP equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 695-721. doi: 10.3934/dcdss.2020362

[3]

Mengyu Cheng, Zhenxin Liu. Periodic, almost periodic and almost automorphic solutions for SPDEs with monotone coefficients. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021026

[4]

Yongge Tian, Pengyang Xie. Simultaneous optimal predictions under two seemingly unrelated linear random-effects models. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020168

[5]

Nguyen Thi Kim Son, Nguyen Phuong Dong, Le Hoang Son, Alireza Khastan, Hoang Viet Long. Complete controllability for a class of fractional evolution equations with uncertainty. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020104

[6]

Oleg Yu. Imanuvilov, Jean Pierre Puel. On global controllability of 2-D Burgers equation. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 299-313. doi: 10.3934/dcds.2009.23.299

[7]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

[8]

Chaman Kumar. On Milstein-type scheme for SDE driven by Lévy noise with super-linear coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1405-1446. doi: 10.3934/dcdsb.2020167

[9]

Kengo Nakai, Yoshitaka Saiki. Machine-learning construction of a model for a macroscopic fluid variable using the delay-coordinate of a scalar observable. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1079-1092. doi: 10.3934/dcdss.2020352

[10]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[11]

Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHUM approach. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020055

[12]

Kuntal Bhandari, Franck Boyer. Boundary null-controllability of coupled parabolic systems with Robin conditions. Evolution Equations & Control Theory, 2021, 10 (1) : 61-102. doi: 10.3934/eect.2020052

[13]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[14]

Larissa Fardigola, Kateryna Khalina. Controllability problems for the heat equation on a half-axis with a bounded control in the Neumann boundary condition. Mathematical Control & Related Fields, 2021, 11 (1) : 211-236. doi: 10.3934/mcrf.2020034

[15]

Mokhtari Yacine. Boundary controllability and boundary time-varying feedback stabilization of the 1D wave equation in non-cylindrical domains. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021004

[16]

Duy Phan. Approximate controllability for Navier–Stokes equations in $ \rm3D $ cylinders under Lions boundary conditions by an explicit saturating set. Evolution Equations & Control Theory, 2021, 10 (1) : 199-227. doi: 10.3934/eect.2020062

2019 Impact Factor: 0.953

Metrics

  • PDF downloads (116)
  • HTML views (330)
  • Cited by (1)

Other articles
by authors

[Back to Top]