[1]
|
E. Abreu, M. Lightstone, S. K. Mitra and K. Arakawa, A new efficient approach for the removal of impulse noise from highly corrupted images, IEEE Transactions on Image Processing, 5 (1996), 1012-1025.
doi: 10.1109/83.503916.
|
[2]
|
S. Alliney, A property of the minimum vectors of a regularizing functional defined by means of the absolute norm, IEEE Transactions on Signal Processing, 45 (1997), 913-917.
doi: 10.1109/78.564179.
|
[3]
|
H. Attouch, J. Bolte and B. F. Svaiter, Convergence of descent methods for semi-algebraic and tame problems: Proximal algorithms, forward–backward splitting, and regularized gauss–seidel methods, Mathematical Programming, 137 (2013), 91-129.
doi: 10.1007/s10107-011-0484-9.
|
[4]
|
A. Beck and L. Tetruashvili, On the convergence of block coordinate descent type methods, SIAM Journal on Optimization, 23 (2013), 2037-2060.
doi: 10.1137/120887679.
|
[5]
|
D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Computation: Numerical Methods, Athena Scientific, Belmont, MA, 2014.
|
[6]
|
P. Bloomfield and W. Steiger, Least Absolute Deviations, Theory, Applications, and Algorithms, Progress in Probability and Statistics, 6. Birkhäuser Boston, Inc., Boston, MA, 1983.
|
[7]
|
J. Bolte, S. Sabach and M. Teboulle, Proximal alternating linearized minimization for nonconvex and nonsmooth problems, Mathematical Programming, 146 (2014), 459-494.
doi: 10.1007/s10107-013-0701-9.
|
[8]
|
J. F. Cai, E. J. Cand$\grave{e}$s and Z. Shen, A singular value thresholding algorithm for matrix completion, Siam Journal on Optimization, 20 (2008), 1956-1982.
doi: 10.1137/080738970.
|
[9]
|
J. F. Cai, R. H. Chan and M. Nikolova, Two-phase approach for deblurring images corrupted by impulse plus gaussian noise, Inverse Problems and Imaging, 2 (2012), 187-204.
doi: 10.3934/ipi.2008.2.187.
|
[10]
|
C. Chen, B. He and X. Yuan, Matrix completion via an alternating direction method, Ima Journal of Numerical Analysis, 32 (2012), 227-245.
doi: 10.1093/imanum/drq039.
|
[11]
|
Z. Dong and W. Zhu, An improvement of the penalty decomposition method for sparse approximation, Signal Processing, 113 (2015), 52-60.
doi: 10.1016/j.sigpro.2015.01.012.
|
[12]
|
M. Fazel, H. Hindi and S. P. Boyd, Rank minimization and applications in system theory, in American Control Conference, 2004. Proceedings of the IEEE, 4 (2004).
doi: 10.23919/ACC.2004.1384521.
|
[13]
|
M. Fazel, H. Hindi and S. P. Boyd, A rank minimization heuristic with application to minimum order system approximation, in American Control Conference, 2001. Proceedings of the IEEE, 6 (2001).
doi: 10.1109/ACC.2001.945730.
|
[14]
|
S. Gu, L. Zhang, W. Zuo and X. Feng, Weighted nuclear norm minimization with application to image denoising, in Computer Vision and Pattern Recognition, 2014, 2862–2869.
doi: 10.1109/CVPR.2014.366.
|
[15]
|
H. Ji, C. Liu, Z. Shen and Y. Xu, Robust video denoising using low rank matrix completion, in Computer Vision and Pattern Recognition, 2010, 1791–1798.
doi: 10.1109/CVPR.2010.5539849.
|
[16]
|
Z. F. Jin, Z. Wan, X. Zhao and Y. Xiao, A penalty decomposition method for rank minimization problem with affine constraints, Applied Mathematical Modelling, 39 (2015), 4859-4870.
doi: 10.1016/j.apm.2015.03.054.
|
[17]
|
Z. F. Jin, Q. Wang and Z. Wan, Recovering low-rank matrices from corrupted observations via the linear conjugate gradient algorithm, Journal of Computational and Applied Mathematics, 256 (2014), 114-120.
doi: 10.1016/j.cam.2013.07.009.
|
[18]
|
Z. Lu and Y. Zhang, Penalty decomposition methods for rank minimization, Optimization Methods and Software, 30 (2015), 531-558.
doi: 10.1080/10556788.2014.936438.
|
[19]
|
S. Ma, D. Goldfarb and L. Chen, Fixed point and Bregman iterative methods for matrix rank minimization, Mathematical Programming, 128 (2011), 321-353.
doi: 10.1007/s10107-009-0306-5.
|
[20]
|
Y. Marnissi, Y. Zheng, E. Chouzenoux and J. C. Pesquet, A Variational Bayesian Approach for Restoring Data Corrupted with Non-Gaussian Noise, Research report, Laboratoire Informatique Gaspard Monge, 2016.
|
[21]
|
C. A. Micchelli, L. Shen, Y. Xu and X. Zeng, Proximity algorithms for the l1/tv image denoising model, Advances in Computational Mathematics, 38 (2013), 401-426.
doi: 10.1007/s10444-011-9243-y.
|
[22]
|
K. Mohan and M. Fazel, Reweighted nuclear norm minimization with application to system identification, in American Control Conference, 2010, 2953–2959.
doi: 10.1109/ACC.2010.5531594.
|
[23]
|
M. Nikolova, A variational approach to remove outliers and impulse noise, Journal of Mathematical Imaging and Vision, 20 (2004), 99-120.
doi: 10.1023/B:JMIV.0000011920.58935.9c.
|
[24]
|
J. Nocedal and S. J. Wright, Numerical Optimization, Springer, 1999.
doi: 10.1007/b98874.
|
[25]
|
J. F. Sturm, Using SeDuMi 1.02, a matlab toolbox for optimization over symmetric cones, Optimization Methods and Software, 11 (1999), 625-653.
doi: 10.1080/10556789908805766.
|
[26]
|
K. C. Toh and S. W. Yun, An accelerated proximal gradient algorithm for nuclear norm regularized least squares problems, Pacific Journal of Optimization, 6 (2010), 615-640.
|
[27]
|
P. Tseng, Convergence of a block coordinate descent method for nondifferentiable minimization, Journal of Optimization Theory and Applications, 109 (2001), 475-494.
doi: 10.1023/A:1017501703105.
|
[28]
|
R. H. Tütüncü, K. C. Toh and M. J. Todd, Solving semidefinite-quadratic-linear programs using SDPT3, Mathematical Programming, 95 (2003), 189-217.
doi: 10.1007/s10107-002-0347-5.
|
[29]
|
Y. H. Xiao and Z. F. Jin, An alternating direction method for linear-constrained matrix nuclear norm minimization, Numerical Linear Algebra with Applications, 19 (2012), 541-554.
doi: 10.1002/nla.783.
|
[30]
|
J. Yang, L. Luo, J. Qian, Y. Tai, F. Zhang and Y. Xu, Nuclear norm based matrix regression with applications to face recognition with occlusion and illumination changes, IEEE Transactions on Pattern Analysis and Machine Intelligence, 39 (2016), 156-171.
|
[31]
|
J. Yang and X. Yuan, Linearized augmented lagrangian and alternating direction methods for nuclear norm minimization, Mathematics of Computation, 82 (2013), 301-329.
doi: 10.1090/S0025-5718-2012-02598-1.
|