December  2019, 8(4): 709-735. doi: 10.3934/eect.2019035

Well-posedness and asymptotic behavior of the dissipative Ostrovsky equation

1. 

School of Mathematics and Statistics, Anyang Normal University, Anyang 455000, China

2. 

School of Mathematics and Computer Science, Damghan University, Damghan 36715-364, Iran

3. 

Institute for Research in Fundamental Sciences (IPM), Tehran 19395-5746, Iran

* Corresponding author: Amin Esfahani

Received  July 2018 Revised  January 2019 Published  June 2019

Fund Project: The second author is partially supported by a grant from IPM (No. 96470043).

In this paper we study the global well-posedness and the large-time behavior of solutions to the initial-value problem for the dissipative Ostrovsky equation. We show that the associated solutions decay faster than the solutions of the dissipative KdV equation.

Citation: Hongwei Wang, Amin Esfahani. Well-posedness and asymptotic behavior of the dissipative Ostrovsky equation. Evolution Equations & Control Theory, 2019, 8 (4) : 709-735. doi: 10.3934/eect.2019035
References:
[1]

C. J. AmickJ. L. Bona and M. E. Schonbek, Decay of solutions of some nonlinear wave equations, J. Differential Equations, 81 (1989), 1-49.  doi: 10.1016/0022-0396(89)90176-9.  Google Scholar

[2]

I. Bejenaru and T. Tao, Sharp well-posedness and ill-posedness results for a quadratic non-linear Schrödinger equation, J. Funct. Anal., 233 (2006), 228-259.  doi: 10.1016/j.jfa.2005.08.004.  Google Scholar

[3]

O. Besov, V. Ilin and S. Nikolski, Integral Representation of Functions and Embedding Theorems. Vol. I., New York: J. Wiley, 1978.  Google Scholar

[4]

J. Bourgain, On the Cauchy problem for the Kadomtsev-Petviashvili equation, Geom. Funct. Anal., 3 (1993), 315-341.  doi: 10.1007/BF01896259.  Google Scholar

[5]

W. ChenC. Miao and J. Li, On the well-posedness of the Cauchy problem for dissipative modified Korteweg-de Vries equations, Differential Integral Equations, 20 (2007), 1285-1301.   Google Scholar

[6]

A. Esfahani and S. Levandosky, Solitary waves of the rotation-generalized Benjamin-Ono equation, Discrete Contin. Dyn. Syst., 33 (2013), 663-700.  doi: 10.3934/dcds.2013.33.663.  Google Scholar

[7]

K. FujiwaraV. Georgiev and T. Ozawa, Higher order fractional Leibniz rule, J. Fourier Anal. Appl., 24 (2018), 650-665.  doi: 10.1007/s00041-017-9541-y.  Google Scholar

[8]

V. N. Galkin and Y. A. Stepanyants, On the existence of stationary solitary waves in a rotating field, J. Appl. Math. Mech., 55 (1991), 939-943.  doi: 10.1016/0021-8928(91)90148-N.  Google Scholar

[9]

O. A. GilmanR. Grimshaw and Y. A. Stepanyants, Approximate and numerical solutions of the stationary Ostrovsky equation, Stud. Appl. Math., 95 (1995), 115-126.  doi: 10.1002/sapm1995951115.  Google Scholar

[10]

J. GinibreY. Tsutsumi and G. Velo, On the cauchy problem for the Zakharov system, J. Func. Anal., 151 (1997), 384-436.  doi: 10.1006/jfan.1997.3148.  Google Scholar

[11]

R. Grimshaw, Internal solitary waves, in: R. Grimshaw (Ed.), Environmental Stratified Flows, Kluwer, Boston, (2001), pp. 1–27. Google Scholar

[12]

Z. Guo and B. Wang, Global well-posedness and inviscid limit for the Korteweg-de Vries-Burgers equation, J. Differential Equations, 246 (2009), 3864-3901.  doi: 10.1016/j.jde.2009.03.006.  Google Scholar

[13]

Z. Huo and Y. Jia, Low-regularity solutions for the Ostrovsky equation, Proc. Edinb. Math. Soc., 49 (2006), 87-100.  doi: 10.1017/S0013091504000938.  Google Scholar

[14]

P. Isaza and J. Mejía, Local well-posedness and quantitative ill-posedness for the Ostrovsky equation, Nonlinear Anal., 70 (2009), 2306-2316.  doi: 10.1016/j.na.2008.03.010.  Google Scholar

[15]

G. Karch, Self-similar large time behavior of solutions to Korteweg-de Vries-Burgers equation, Nonlinear Anal., 35 (1999), 199-219.  doi: 10.1016/S0362-546X(97)00708-6.  Google Scholar

[16]

C. KenigG. Ponce and L. Vega, A bilinear estimate with applications to the KdV equation, J. Amer. Math. Soc., 9 (1996), 573-603.  doi: 10.1090/S0894-0347-96-00200-7.  Google Scholar

[17]

S. Levandosky and Y. Liu, Stability of solitary waves of a generalized Ostrovsky equation, SIAM J. Math. Anal., 38 (2006), 985-1011.  doi: 10.1137/050638722.  Google Scholar

[18]

Y. LiJ. Huang and W. Yan, The Cauchy problem for the Ostrovsky equation with negative dispersion at the critical regularity, J. Differential Equations, 259 (2015), 1379-1408.  doi: 10.1016/j.jde.2015.03.007.  Google Scholar

[19]

F. Linares and A. Milanes, Local and global well-posedness for the Ostrovsky equation, J. Differential Equations, 222 (2006), 325-340.  doi: 10.1016/j.jde.2005.07.023.  Google Scholar

[20]

B. Melinand, Long wave approximation for water waves under a Coriolis forcing and the Ostrovsky equation, Proc. Roy. Soc. Edinburgh Sect. A, 148 (2018), 1201-1237.  doi: 10.1017/S0308210518000136.  Google Scholar

[21]

H. Mitsudera and R. Grimshaw, Effects of friction on a localized structure in a baroclinic current, J. Physical Oceanography, 23 (1993), 2265-2292.  doi: 10.1175/1520-0485(1993)023<2265:EOFOAL>2.0.CO;2.  Google Scholar

[22]

L. Molinet and F. Ribaud, The Cauchy problem for dissipative Korteweg-de Vries equations in Sobolev spaces of negative order, Indiana Univ. Math. J., 50 (2001), 1745-1776.  doi: 10.1512/iumj.2001.50.2135.  Google Scholar

[23]

L. Molinet and F. Ribaud, On the low regularity of the Korteweg-de Vries-Burgers equation, Inter. Math. Research Notices, 37 (2002), 1979-2005.  doi: 10.1155/S1073792802112104.  Google Scholar

[24]

L. Molinet and F. Ribaud, The global Cauchy problem in Bourgain's-type spaces for a dispersive dissipative semilinear equation, SIAM J. Math. Anal., 33 (2002), 1269-1296.  doi: 10.1137/S0036141000374634.  Google Scholar

[25]

L. A. Ostrovsky, Nonlinear internal waves in a rotating ocean, Oceanologia, 18 (1978), 181-191.   Google Scholar

[26]

E. Ott and R. N. Sudan, Damping of solitary waves, Physics of Fluids, 13 (1970), 1432-1434.  doi: 10.1063/1.1693097.  Google Scholar

[27]

T. Tao, Multilinear weighted convolution of $L^2$ functions, and applications to non-linear dispersive equations, Amer. J. Math., 123 (2001), 839-908.  doi: 10.1353/ajm.2001.0035.  Google Scholar

[28]

S. Vento, Asymptotic behavior of solutions to dissipative Korteweg-de Vries equations, Asymptot. Anal., 68 (2010), 155-186.   Google Scholar

[29]

S. Vento, Global well-posedness for dissipative Korteweg-de Vries equations, Funkcial. Ekvac., 54 (2011), 119-138.  doi: 10.1619/fesi.54.119.  Google Scholar

[30]

S. Vento, Well-posedness and ill-posedness results for dissipative Benjamin-Ono equations, Osaka J. Math., 48 (2011), 933-958.   Google Scholar

show all references

References:
[1]

C. J. AmickJ. L. Bona and M. E. Schonbek, Decay of solutions of some nonlinear wave equations, J. Differential Equations, 81 (1989), 1-49.  doi: 10.1016/0022-0396(89)90176-9.  Google Scholar

[2]

I. Bejenaru and T. Tao, Sharp well-posedness and ill-posedness results for a quadratic non-linear Schrödinger equation, J. Funct. Anal., 233 (2006), 228-259.  doi: 10.1016/j.jfa.2005.08.004.  Google Scholar

[3]

O. Besov, V. Ilin and S. Nikolski, Integral Representation of Functions and Embedding Theorems. Vol. I., New York: J. Wiley, 1978.  Google Scholar

[4]

J. Bourgain, On the Cauchy problem for the Kadomtsev-Petviashvili equation, Geom. Funct. Anal., 3 (1993), 315-341.  doi: 10.1007/BF01896259.  Google Scholar

[5]

W. ChenC. Miao and J. Li, On the well-posedness of the Cauchy problem for dissipative modified Korteweg-de Vries equations, Differential Integral Equations, 20 (2007), 1285-1301.   Google Scholar

[6]

A. Esfahani and S. Levandosky, Solitary waves of the rotation-generalized Benjamin-Ono equation, Discrete Contin. Dyn. Syst., 33 (2013), 663-700.  doi: 10.3934/dcds.2013.33.663.  Google Scholar

[7]

K. FujiwaraV. Georgiev and T. Ozawa, Higher order fractional Leibniz rule, J. Fourier Anal. Appl., 24 (2018), 650-665.  doi: 10.1007/s00041-017-9541-y.  Google Scholar

[8]

V. N. Galkin and Y. A. Stepanyants, On the existence of stationary solitary waves in a rotating field, J. Appl. Math. Mech., 55 (1991), 939-943.  doi: 10.1016/0021-8928(91)90148-N.  Google Scholar

[9]

O. A. GilmanR. Grimshaw and Y. A. Stepanyants, Approximate and numerical solutions of the stationary Ostrovsky equation, Stud. Appl. Math., 95 (1995), 115-126.  doi: 10.1002/sapm1995951115.  Google Scholar

[10]

J. GinibreY. Tsutsumi and G. Velo, On the cauchy problem for the Zakharov system, J. Func. Anal., 151 (1997), 384-436.  doi: 10.1006/jfan.1997.3148.  Google Scholar

[11]

R. Grimshaw, Internal solitary waves, in: R. Grimshaw (Ed.), Environmental Stratified Flows, Kluwer, Boston, (2001), pp. 1–27. Google Scholar

[12]

Z. Guo and B. Wang, Global well-posedness and inviscid limit for the Korteweg-de Vries-Burgers equation, J. Differential Equations, 246 (2009), 3864-3901.  doi: 10.1016/j.jde.2009.03.006.  Google Scholar

[13]

Z. Huo and Y. Jia, Low-regularity solutions for the Ostrovsky equation, Proc. Edinb. Math. Soc., 49 (2006), 87-100.  doi: 10.1017/S0013091504000938.  Google Scholar

[14]

P. Isaza and J. Mejía, Local well-posedness and quantitative ill-posedness for the Ostrovsky equation, Nonlinear Anal., 70 (2009), 2306-2316.  doi: 10.1016/j.na.2008.03.010.  Google Scholar

[15]

G. Karch, Self-similar large time behavior of solutions to Korteweg-de Vries-Burgers equation, Nonlinear Anal., 35 (1999), 199-219.  doi: 10.1016/S0362-546X(97)00708-6.  Google Scholar

[16]

C. KenigG. Ponce and L. Vega, A bilinear estimate with applications to the KdV equation, J. Amer. Math. Soc., 9 (1996), 573-603.  doi: 10.1090/S0894-0347-96-00200-7.  Google Scholar

[17]

S. Levandosky and Y. Liu, Stability of solitary waves of a generalized Ostrovsky equation, SIAM J. Math. Anal., 38 (2006), 985-1011.  doi: 10.1137/050638722.  Google Scholar

[18]

Y. LiJ. Huang and W. Yan, The Cauchy problem for the Ostrovsky equation with negative dispersion at the critical regularity, J. Differential Equations, 259 (2015), 1379-1408.  doi: 10.1016/j.jde.2015.03.007.  Google Scholar

[19]

F. Linares and A. Milanes, Local and global well-posedness for the Ostrovsky equation, J. Differential Equations, 222 (2006), 325-340.  doi: 10.1016/j.jde.2005.07.023.  Google Scholar

[20]

B. Melinand, Long wave approximation for water waves under a Coriolis forcing and the Ostrovsky equation, Proc. Roy. Soc. Edinburgh Sect. A, 148 (2018), 1201-1237.  doi: 10.1017/S0308210518000136.  Google Scholar

[21]

H. Mitsudera and R. Grimshaw, Effects of friction on a localized structure in a baroclinic current, J. Physical Oceanography, 23 (1993), 2265-2292.  doi: 10.1175/1520-0485(1993)023<2265:EOFOAL>2.0.CO;2.  Google Scholar

[22]

L. Molinet and F. Ribaud, The Cauchy problem for dissipative Korteweg-de Vries equations in Sobolev spaces of negative order, Indiana Univ. Math. J., 50 (2001), 1745-1776.  doi: 10.1512/iumj.2001.50.2135.  Google Scholar

[23]

L. Molinet and F. Ribaud, On the low regularity of the Korteweg-de Vries-Burgers equation, Inter. Math. Research Notices, 37 (2002), 1979-2005.  doi: 10.1155/S1073792802112104.  Google Scholar

[24]

L. Molinet and F. Ribaud, The global Cauchy problem in Bourgain's-type spaces for a dispersive dissipative semilinear equation, SIAM J. Math. Anal., 33 (2002), 1269-1296.  doi: 10.1137/S0036141000374634.  Google Scholar

[25]

L. A. Ostrovsky, Nonlinear internal waves in a rotating ocean, Oceanologia, 18 (1978), 181-191.   Google Scholar

[26]

E. Ott and R. N. Sudan, Damping of solitary waves, Physics of Fluids, 13 (1970), 1432-1434.  doi: 10.1063/1.1693097.  Google Scholar

[27]

T. Tao, Multilinear weighted convolution of $L^2$ functions, and applications to non-linear dispersive equations, Amer. J. Math., 123 (2001), 839-908.  doi: 10.1353/ajm.2001.0035.  Google Scholar

[28]

S. Vento, Asymptotic behavior of solutions to dissipative Korteweg-de Vries equations, Asymptot. Anal., 68 (2010), 155-186.   Google Scholar

[29]

S. Vento, Global well-posedness for dissipative Korteweg-de Vries equations, Funkcial. Ekvac., 54 (2011), 119-138.  doi: 10.1619/fesi.54.119.  Google Scholar

[30]

S. Vento, Well-posedness and ill-posedness results for dissipative Benjamin-Ono equations, Osaka J. Math., 48 (2011), 933-958.   Google Scholar

[1]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[2]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[3]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[4]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[5]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[6]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[7]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[8]

Luca Battaglia, Francesca Gladiali, Massimo Grossi. Asymptotic behavior of minimal solutions of $ -\Delta u = \lambda f(u) $ as $ \lambda\to-\infty $. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 681-700. doi: 10.3934/dcds.2020293

[9]

Alessandro Carbotti, Giovanni E. Comi. A note on Riemann-Liouville fractional Sobolev spaces. Communications on Pure & Applied Analysis, 2021, 20 (1) : 17-54. doi: 10.3934/cpaa.2020255

[10]

Giulia Cavagnari, Antonio Marigonda. Attainability property for a probabilistic target in wasserstein spaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 777-812. doi: 10.3934/dcds.2020300

[11]

Emre Esentürk, Juan Velazquez. Large time behavior of exchange-driven growth. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 747-775. doi: 10.3934/dcds.2020299

[12]

Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020

[13]

Vivina Barutello, Gian Marco Canneori, Susanna Terracini. Minimal collision arcs asymptotic to central configurations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 61-86. doi: 10.3934/dcds.2020218

[14]

Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301

[15]

Federico Rodriguez Hertz, Zhiren Wang. On $ \epsilon $-escaping trajectories in homogeneous spaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 329-357. doi: 10.3934/dcds.2020365

[16]

Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250

[17]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[18]

Giulia Luise, Giuseppe Savaré. Contraction and regularizing properties of heat flows in metric measure spaces. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 273-297. doi: 10.3934/dcdss.2020327

[19]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[20]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

2019 Impact Factor: 0.953

Metrics

  • PDF downloads (137)
  • HTML views (360)
  • Cited by (1)

Other articles
by authors

[Back to Top]