• Previous Article
    Exponential stability for the coupled Klein-Gordon-Schrödinger equations with locally distributed damping
  • EECT Home
  • This Issue
  • Next Article
    A new energy-gap cost functional approach for the exterior Bernoulli free boundary problem
December  2019, 8(4): 825-846. doi: 10.3934/eect.2019040

Optimal energy decay rates for some wave equations with double damping terms

Department of Mathematics, Graduate School of Education, Hiroshima University, Higashi-Hiroshima 739-8524, Japan

* Corresponding author: Ryo Ikehata

Received  October 2018 Revised  February 2019 Published  December 2019 Early access  June 2019

Fund Project: The first author is supported by grant-in-Aid for scientific Research (C)15K04958 of JSPS.

We consider the Cauchy problem in $ {\bf R}^{n} $ for some wave equations with double damping terms, that is, one is the frictional damping $ u_{t}(t, x) $ and the other is very strong structural damping expressed as $ (-\Delta)^{\theta}u_{t}(t, x) $ with $ \theta > 1 $. We will derive optimal decay rates of the total energy and the $ L^{2} $-norm of solutions as $ t \to \infty $. These results can be obtained in the case when the initial data have a sufficient high regularity in order to guarantee that the corresponding high frequency parts of such energy and $ L^{2} $-norm of solutions are remainder terms. A strategy to get such results comes from a method recently developed by the first author [11].

Citation: Ryo Ikehata, Shingo Kitazaki. Optimal energy decay rates for some wave equations with double damping terms. Evolution Equations and Control Theory, 2019, 8 (4) : 825-846. doi: 10.3934/eect.2019040
References:
[1]

R. C. CharãoC. R. da Luz and R. Ikehata, Sharp decay rates for wave equations with a fractional damping via new method in the Fourier space, J. Math Anal. Appl, 408 (2013), 247-255.  doi: 10.1016/j.jmaa.2013.06.016.

[2]

R. Chill and A. Haraux, An optimal estimate for the difference of solutions of two abstract evolution equations, J. Diff. Eqns, 193 (2003), 385-395.  doi: 10.1016/S0022-0396(03)00057-3.

[3]

M. D'Abbicco, $L^1$-$L^ 1$ estimates for a doubly dissipative semilinear wave equation, NoDEA Nonlinear Differential Equations Appl, 24 (2017), Art. 5, 23 pp. doi: 10.1007/s00030-016-0428-4.

[4]

M. D'Abbicco and M. R. Ebert, Diffusion phenomena for the wave equation with structural damping in the $L^{p}$-$L^{q}$ framework, J. Diff. Eqns, 256 (2014), 2307-2336.  doi: 10.1016/j.jde.2014.01.002.

[5]

M. D'Abbicco and M. R. Ebert, A classification of structural dissipations for evolution operators, Math. Methods Appl. Sci., 39 (2016), 2558-2582.  doi: 10.1002/mma.3713.

[6]

M. D'Abbicco and M. R. Ebert, A new phenomenon in the critical exponent for structurally damped semi-linear evolution equations, Nonlinear Anal., 149 (2017), 1-40.  doi: 10.1016/j.na.2016.10.010.

[7]

M. D'AbbiccoM. R. Ebert and T. Picon, Long time decay estimates in real Hardy spaces for evolution equations with structural dissipation, J. Pseudo-Differ. Oper. Appl., 7 (2016), 261-293.  doi: 10.1007/s11868-015-0141-9.

[8]

M. D'Abbicco and M. Reissig, Semilinear structural damped waves, Math. Methods Appl. Sci., 37 (2014), 1570-1592.  doi: 10.1002/mma.2913.

[9]

M. GhisiM. Gobbino and A. Haraux, Local and global smoothing effects for some linear hyperbolic equations with a strong dissipation, Trans. Amer. Math. Soc., 368 (2016), 2039-2079.  doi: 10.1090/tran/6520.

[10]

R. Ikehata, Decay estimates of solutions for the wave equations with strong damping terms in unbounded domains, Math. Methods Appl. Sci., 24 (2001), 659-670.  doi: 10.1002/mma.235.

[11]

R. Ikehata, Asymptotic profiles for wave equations with strong damping, J. Diff. Eqns, 257 (2014), 2159-2177.  doi: 10.1016/j.jde.2014.05.031.

[12]

R. Ikehata and S. Iyota, Asymptotic profile of solutions for some wave equations with very strong structural damping, Math. Methods Appl. Sci., 41 (2018), 5074-5090.  doi: 10.1002/mma.4954.

[13]

R. Ikehata and H. Michihisa, Moment conditions and lower bounds in expanding solutions of wave equations with double damping terms, arXiv: 1807.10020, Asymptotic Analysis doi: 10.3233/ASY-181516.

[14]

R. Ikehata and M. Natsume, Energy decay estimates for wave equations with a fractional damping, Diff. Int. Eqns, 25 (2012), 939-956. 

[15]

R. Ikehata and M. Onodera, Remarks on large time behavior of the $L^{2}$-norm of solutions to strongly damped wave equations, Diff. Int. Eqns, 30 (2017), 505-520. 

[16]

R. Ikehata and A. Sawada, Asymptotic profiles of solutions for wave equations with frictional and viscoelastic damping terms, Asymptotic Anal., 98 (2016), 59-77.  doi: 10.3233/ASY-161361.

[17]

R. Ikehata and H. Takeda, Critical exponent for nonlinear wave equations with frictional and viscoelastic damping terms, Nonlinear Anal, 148 (2017), 228-253.  doi: 10.1016/j.na.2016.10.008.

[18]

R. Ikehata and H. Takeda, Large time behavior of global solutions to nonlinear wave equations with frictional and viscoelastic damping terms, Osaka Math. J., (in press).

[19]

R. Ikehata and H. Takeda, Asymptotic profiles of solutions for structural damped wave equations, arXiv: 1607.01839, Journal of Dynamics and Differential Equations, 31 (2019), 537–571. doi: 10.1007/s10884-019-09731-8.

[20]

R. IkehataG. Todorova and B. Yordanov, Wave equations with strong damping in Hilbert spaces, J. Diff. Eqns, 254 (2013), 3352-3368.  doi: 10.1016/j.jde.2013.01.023.

[21]

G. Karch, Selfsimilar profiles in large time asymptotics of solutions to damped wave equations, Studia Math, 143 (2000), 175-197.  doi: 10.4064/sm-143-2-175-197.

[22]

X. Lu and M. Reissig, Rates of decay for structural damped models with decreasing in time coefficients, Int. J. Dynamical Systems and Diff. Eqns, 2 (2009), 21-55.  doi: 10.1504/IJDSDE.2009.028034.

[23]

A. Matsumura, On the asymptotic behavior of solutions of semilinear wave equations, Publ. RIMS Kyoto Univ, 12 (1976), 169-189.  doi: 10.2977/prims/1195190962.

[24]

H. Michihisa, Expanding methods for evolution operators of strongly damped wave equations, preprint.

[25]

K. Nishihara, $L^{p}$-$L^{q}$ estimates to the damped wave equation in $3$-dimensional space and their application, Math. Z., 244 (2003), 631-649.  doi: 10.1007/s00209-003-0516-0.

[26]

G. Ponce, Global existence of small solutions to a class of nonlinear evolution equations, Nonlinear Anal., 9 (1985), 399-418.  doi: 10.1016/0362-546X(85)90001-X.

[27]

R. Racke, Non-homogeneous non-linear damped wave equations in unbounded domains, Math. Meth. Appl. Sci., 13 (1990), 481-491.  doi: 10.1002/mma.1670130604.

[28]

Y. Shibata, On the rate of decay of solutions to linear viscoelastic equation, Math. Meth. Appl. Sci., 23 (2000), 203-226.  doi: 10.1002/(SICI)1099-1476(200002)23:3<203::AID-MMA111>3.0.CO;2-M.

[29]

M. Sobajima and Y. Wakasug, Diffusion phenomena for the wave equation with space dependent damping in an exterior domain, J. Diff. Eqns, 261 (2016), 5690-5718.  doi: 10.1016/j.jde.2016.08.006.

[30]

M. Taylor, The diffusion phenomenon for damped wave equations with space-time dependent coefficients, Discrete Continuous Dynamical Systems, 38 (2018), 5921-5941.  doi: 10.3934/dcds.2018257.

[31]

G. Todorova and B. Yordanov, Critical exponent for a nonlinear wave equation with damping, J. Diff. Eqns, 174 (2001), 464-489.  doi: 10.1006/jdeq.2000.3933.

[32]

T. UmedaS. Kawashima and Y. Shizuta, On the decay of solutions to the linearized equations of electro-magneto-fluid dynamics, Japan J. Appl. Math., 1 (1984), 435-457.  doi: 10.1007/BF03167068.

show all references

References:
[1]

R. C. CharãoC. R. da Luz and R. Ikehata, Sharp decay rates for wave equations with a fractional damping via new method in the Fourier space, J. Math Anal. Appl, 408 (2013), 247-255.  doi: 10.1016/j.jmaa.2013.06.016.

[2]

R. Chill and A. Haraux, An optimal estimate for the difference of solutions of two abstract evolution equations, J. Diff. Eqns, 193 (2003), 385-395.  doi: 10.1016/S0022-0396(03)00057-3.

[3]

M. D'Abbicco, $L^1$-$L^ 1$ estimates for a doubly dissipative semilinear wave equation, NoDEA Nonlinear Differential Equations Appl, 24 (2017), Art. 5, 23 pp. doi: 10.1007/s00030-016-0428-4.

[4]

M. D'Abbicco and M. R. Ebert, Diffusion phenomena for the wave equation with structural damping in the $L^{p}$-$L^{q}$ framework, J. Diff. Eqns, 256 (2014), 2307-2336.  doi: 10.1016/j.jde.2014.01.002.

[5]

M. D'Abbicco and M. R. Ebert, A classification of structural dissipations for evolution operators, Math. Methods Appl. Sci., 39 (2016), 2558-2582.  doi: 10.1002/mma.3713.

[6]

M. D'Abbicco and M. R. Ebert, A new phenomenon in the critical exponent for structurally damped semi-linear evolution equations, Nonlinear Anal., 149 (2017), 1-40.  doi: 10.1016/j.na.2016.10.010.

[7]

M. D'AbbiccoM. R. Ebert and T. Picon, Long time decay estimates in real Hardy spaces for evolution equations with structural dissipation, J. Pseudo-Differ. Oper. Appl., 7 (2016), 261-293.  doi: 10.1007/s11868-015-0141-9.

[8]

M. D'Abbicco and M. Reissig, Semilinear structural damped waves, Math. Methods Appl. Sci., 37 (2014), 1570-1592.  doi: 10.1002/mma.2913.

[9]

M. GhisiM. Gobbino and A. Haraux, Local and global smoothing effects for some linear hyperbolic equations with a strong dissipation, Trans. Amer. Math. Soc., 368 (2016), 2039-2079.  doi: 10.1090/tran/6520.

[10]

R. Ikehata, Decay estimates of solutions for the wave equations with strong damping terms in unbounded domains, Math. Methods Appl. Sci., 24 (2001), 659-670.  doi: 10.1002/mma.235.

[11]

R. Ikehata, Asymptotic profiles for wave equations with strong damping, J. Diff. Eqns, 257 (2014), 2159-2177.  doi: 10.1016/j.jde.2014.05.031.

[12]

R. Ikehata and S. Iyota, Asymptotic profile of solutions for some wave equations with very strong structural damping, Math. Methods Appl. Sci., 41 (2018), 5074-5090.  doi: 10.1002/mma.4954.

[13]

R. Ikehata and H. Michihisa, Moment conditions and lower bounds in expanding solutions of wave equations with double damping terms, arXiv: 1807.10020, Asymptotic Analysis doi: 10.3233/ASY-181516.

[14]

R. Ikehata and M. Natsume, Energy decay estimates for wave equations with a fractional damping, Diff. Int. Eqns, 25 (2012), 939-956. 

[15]

R. Ikehata and M. Onodera, Remarks on large time behavior of the $L^{2}$-norm of solutions to strongly damped wave equations, Diff. Int. Eqns, 30 (2017), 505-520. 

[16]

R. Ikehata and A. Sawada, Asymptotic profiles of solutions for wave equations with frictional and viscoelastic damping terms, Asymptotic Anal., 98 (2016), 59-77.  doi: 10.3233/ASY-161361.

[17]

R. Ikehata and H. Takeda, Critical exponent for nonlinear wave equations with frictional and viscoelastic damping terms, Nonlinear Anal, 148 (2017), 228-253.  doi: 10.1016/j.na.2016.10.008.

[18]

R. Ikehata and H. Takeda, Large time behavior of global solutions to nonlinear wave equations with frictional and viscoelastic damping terms, Osaka Math. J., (in press).

[19]

R. Ikehata and H. Takeda, Asymptotic profiles of solutions for structural damped wave equations, arXiv: 1607.01839, Journal of Dynamics and Differential Equations, 31 (2019), 537–571. doi: 10.1007/s10884-019-09731-8.

[20]

R. IkehataG. Todorova and B. Yordanov, Wave equations with strong damping in Hilbert spaces, J. Diff. Eqns, 254 (2013), 3352-3368.  doi: 10.1016/j.jde.2013.01.023.

[21]

G. Karch, Selfsimilar profiles in large time asymptotics of solutions to damped wave equations, Studia Math, 143 (2000), 175-197.  doi: 10.4064/sm-143-2-175-197.

[22]

X. Lu and M. Reissig, Rates of decay for structural damped models with decreasing in time coefficients, Int. J. Dynamical Systems and Diff. Eqns, 2 (2009), 21-55.  doi: 10.1504/IJDSDE.2009.028034.

[23]

A. Matsumura, On the asymptotic behavior of solutions of semilinear wave equations, Publ. RIMS Kyoto Univ, 12 (1976), 169-189.  doi: 10.2977/prims/1195190962.

[24]

H. Michihisa, Expanding methods for evolution operators of strongly damped wave equations, preprint.

[25]

K. Nishihara, $L^{p}$-$L^{q}$ estimates to the damped wave equation in $3$-dimensional space and their application, Math. Z., 244 (2003), 631-649.  doi: 10.1007/s00209-003-0516-0.

[26]

G. Ponce, Global existence of small solutions to a class of nonlinear evolution equations, Nonlinear Anal., 9 (1985), 399-418.  doi: 10.1016/0362-546X(85)90001-X.

[27]

R. Racke, Non-homogeneous non-linear damped wave equations in unbounded domains, Math. Meth. Appl. Sci., 13 (1990), 481-491.  doi: 10.1002/mma.1670130604.

[28]

Y. Shibata, On the rate of decay of solutions to linear viscoelastic equation, Math. Meth. Appl. Sci., 23 (2000), 203-226.  doi: 10.1002/(SICI)1099-1476(200002)23:3<203::AID-MMA111>3.0.CO;2-M.

[29]

M. Sobajima and Y. Wakasug, Diffusion phenomena for the wave equation with space dependent damping in an exterior domain, J. Diff. Eqns, 261 (2016), 5690-5718.  doi: 10.1016/j.jde.2016.08.006.

[30]

M. Taylor, The diffusion phenomenon for damped wave equations with space-time dependent coefficients, Discrete Continuous Dynamical Systems, 38 (2018), 5921-5941.  doi: 10.3934/dcds.2018257.

[31]

G. Todorova and B. Yordanov, Critical exponent for a nonlinear wave equation with damping, J. Diff. Eqns, 174 (2001), 464-489.  doi: 10.1006/jdeq.2000.3933.

[32]

T. UmedaS. Kawashima and Y. Shizuta, On the decay of solutions to the linearized equations of electro-magneto-fluid dynamics, Japan J. Appl. Math., 1 (1984), 435-457.  doi: 10.1007/BF03167068.

[1]

Mohammad Al-Gharabli, Mohamed Balegh, Baowei Feng, Zayd Hajjej, Salim A. Messaoudi. Existence and general decay of Balakrishnan-Taylor viscoelastic equation with nonlinear frictional damping and logarithmic source term. Evolution Equations and Control Theory, 2021  doi: 10.3934/eect.2021038

[2]

Tae Gab Ha. On viscoelastic wave equation with nonlinear boundary damping and source term. Communications on Pure and Applied Analysis, 2010, 9 (6) : 1543-1576. doi: 10.3934/cpaa.2010.9.1543

[3]

Marcelo M. Cavalcanti, Valéria N. Domingos Cavalcanti, Irena Lasiecka, Flávio A. Falcão Nascimento. Intrinsic decay rate estimates for the wave equation with competing viscoelastic and frictional dissipative effects. Discrete and Continuous Dynamical Systems - B, 2014, 19 (7) : 1987-2011. doi: 10.3934/dcdsb.2014.19.1987

[4]

Moez Daoulatli. Energy decay rates for solutions of the wave equation with linear damping in exterior domain. Evolution Equations and Control Theory, 2016, 5 (1) : 37-59. doi: 10.3934/eect.2016.5.37

[5]

Mohammad A. Rammaha, Daniel Toundykov, Zahava Wilstein. Global existence and decay of energy for a nonlinear wave equation with $p$-Laplacian damping. Discrete and Continuous Dynamical Systems, 2012, 32 (12) : 4361-4390. doi: 10.3934/dcds.2012.32.4361

[6]

Abdelaziz Soufyane, Belkacem Said-Houari. The effect of the wave speeds and the frictional damping terms on the decay rate of the Bresse system. Evolution Equations and Control Theory, 2014, 3 (4) : 713-738. doi: 10.3934/eect.2014.3.713

[7]

Wenjun Liu, Biqing Zhu, Gang Li, Danhua Wang. General decay for a viscoelastic Kirchhoff equation with Balakrishnan-Taylor damping, dynamic boundary conditions and a time-varying delay term. Evolution Equations and Control Theory, 2017, 6 (2) : 239-260. doi: 10.3934/eect.2017013

[8]

Ferhat Mohamed, Hakem Ali. Energy decay of solutions for the wave equation with a time-varying delay term in the weakly nonlinear internal feedbacks. Discrete and Continuous Dynamical Systems - B, 2017, 22 (2) : 491-506. doi: 10.3934/dcdsb.2017024

[9]

Rachid Assel, Mohamed Ghazel. Energy decay for the damped wave equation on an unbounded network. Evolution Equations and Control Theory, 2018, 7 (3) : 335-351. doi: 10.3934/eect.2018017

[10]

Jun Zhou. Global existence and energy decay estimate of solutions for a class of nonlinear higher-order wave equation with general nonlinear dissipation and source term. Discrete and Continuous Dynamical Systems - S, 2017, 10 (5) : 1175-1185. doi: 10.3934/dcdss.2017064

[11]

Donghao Li, Hongwei Zhang, Shuo Liu, Qingiyng Hu. Blow-up of solutions to a viscoelastic wave equation with nonlocal damping. Evolution Equations and Control Theory, 2022  doi: 10.3934/eect.2022009

[12]

Menglan Liao. The lifespan of solutions for a viscoelastic wave equation with a strong damping and logarithmic nonlinearity. Evolution Equations and Control Theory, 2022, 11 (3) : 781-792. doi: 10.3934/eect.2021025

[13]

Jing Zhang. The analyticity and exponential decay of a Stokes-wave coupling system with viscoelastic damping in the variational framework. Evolution Equations and Control Theory, 2017, 6 (1) : 135-154. doi: 10.3934/eect.2017008

[14]

Ruy Coimbra Charão, Alessandra Piske, Ryo Ikehata. A dissipative logarithmic-Laplacian type of plate equation: Asymptotic profile and decay rates. Discrete and Continuous Dynamical Systems, 2022, 42 (5) : 2215-2255. doi: 10.3934/dcds.2021189

[15]

Kim Dang Phung. Decay of solutions of the wave equation with localized nonlinear damping and trapped rays. Mathematical Control and Related Fields, 2011, 1 (2) : 251-265. doi: 10.3934/mcrf.2011.1.251

[16]

Hideo Kubo. On the pointwise decay estimate for the wave equation with compactly supported forcing term. Communications on Pure and Applied Analysis, 2015, 14 (4) : 1469-1480. doi: 10.3934/cpaa.2015.14.1469

[17]

Zhiqing Liu, Zhong Bo Fang. Global solvability and general decay of a transmission problem for kirchhoff-type wave equations with nonlinear damping and delay term. Communications on Pure and Applied Analysis, 2020, 19 (2) : 941-966. doi: 10.3934/cpaa.2020043

[18]

Louis Tebou. Energy decay estimates for some weakly coupled Euler-Bernoulli and wave equations with indirect damping mechanisms. Mathematical Control and Related Fields, 2012, 2 (1) : 45-60. doi: 10.3934/mcrf.2012.2.45

[19]

Igor Chueshov, Irena Lasiecka, Daniel Toundykov. Long-term dynamics of semilinear wave equation with nonlinear localized interior damping and a source term of critical exponent. Discrete and Continuous Dynamical Systems, 2008, 20 (3) : 459-509. doi: 10.3934/dcds.2008.20.459

[20]

Gongwei Liu. The existence, general decay and blow-up for a plate equation with nonlinear damping and a logarithmic source term. Electronic Research Archive, 2020, 28 (1) : 263-289. doi: 10.3934/era.2020016

2020 Impact Factor: 1.081

Metrics

  • PDF downloads (218)
  • HTML views (383)
  • Cited by (0)

Other articles
by authors

[Back to Top]