\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Exponential stability for the coupled Klein-Gordon-Schrödinger equations with locally distributed damping

* Research partially supported by the CNPq grant 300631/2003-0.
** Research partially supported by CAPES

Abstract Full Text(HTML) Figure(1) Related Papers Cited by
  • The following coupled damped Klein-Gordon-Schrödinger equations are considered

    $ \begin{eqnarray*} i\psi_t + \Delta \psi + i \alpha b(x)(|\psi|^{2} + 1)\psi & = & \phi \psi \chi_{\omega} \; \hbox{in}\; \Omega \times (0, \infty), \; (\alpha >0)\ \\ \phi_{tt} - \Delta \phi + a(x) \phi_t & = & |\psi|^2 \chi_{\omega}\; \hbox{in}\; \Omega \times (0, \infty), \end{eqnarray*} $

    where $ \Omega $ is a bounded domain of $ \mathbb{R}^2 $, with smooth boundary $ \Gamma $ and $ \omega $ is a neighbourhood of $ \partial \Omega $ satisfying the geometric control condition. Here $ \chi_{\omega} $ represents the characteristic function of $ \omega $. Assuming that $ a, b\in L^{\infty}(\Omega) $ are nonnegative functions such that $ a(x) \geq a_0 >0 $ in $ \omega $ and $ b(x) \geq b_{0} > 0 $ in $ \omega $, the exponential decay rate is proved for every regular solution of the above system. Our result generalizes substantially the previous ones given by Cavalcanti et. al in the reference [9] and [1].

    Mathematics Subject Classification: Primary: 35L70, 35B40.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.   

  • [1] A. F. AlmeidaM. M. Cavalcanti and J. P. Zanchetta, Exponential decay for the coupled Klein-Gordon-Schrödinger equations with locally distributed damping, Communications on Pure and Applied Analysis, 17 (2018), 2039-2061.  doi: 10.3934/cpaa.2018097.
    [2] L. Aloui, Smoothing effect for regularized Schrödinger equation on bounded domains, Asymptot. Anal., 59 (2008), 179-193. 
    [3] L. Aloui, Smoothing effect for regularized Schrödinger equation on compact manifolds, Collect. Math., 59 (2008), 53-62.  doi: 10.1007/BF03191181.
    [4] A. Bachelot, Problème de Cauchy pour des systèmes hyperboliques semi-linéares, Ann. Inst. H. Poincaré Anal. non Linéaire, 1 (1984), 453-478.  doi: 10.1016/S0294-1449(16)30414-0.
    [5] J. B. Baillon and J. M. Chadam, The Cauchy problem for the coupled Klein-Gordon-Schrödinger equations, in Contemporary Developments in Continuum Mechanics and Partial Differential Equations, North Holland, Amsterdam, 30 (1978), 37–44.
    [6] C. Banquet, L. C. F. Ferreira and E. J. Villamizar-Roa, On existence and scattering theory for the Klein-Gordon-Schrödinger system in an infinite L2-norm setting, Ann. Mat. Pura Appl., (4) 194 (2015), 781–804. doi: 10.1007/s10231-013-0398-7.
    [7] C. BardosG. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary, SIAM J. Control Optim, 30 (1992), 1024-1065.  doi: 10.1137/0330055.
    [8] P. Biler, Attractors for the system of Schrödinger and Klein-Gordon equations with Yukawa coupling, SIAM J. Math. Anal., 21 (1990), 1190-1212.  doi: 10.1137/0521065.
    [9] V. BisogninM. M. CavalcantiV. N. Domingos Cavalcanti and J. Soriano, Uniform decay for the Klein-Gordon-Schrödinger equations with locally distributed damping, NoDEA, Nonlinear differ. equ. appl., 15 (2008), 91-113.  doi: 10.1007/s00030-007-6025-9.
    [10] C. A. Bortot and W. J. Corrêa, Exponential stability for the defocusing semilinear Schrödinger equation with locally distributed damping on a bounded domain, Differential and Integral Equations, 31 (2018), 273-300. 
    [11] M. Cavalcanti and V. N. Domingos Cavalcanti, Global existence and uniform decay for the coupled Klein-Gordon-Schrödinger equations, NoDEA, Nonlinear differ. equ. appl., 7 (2000), 285-307.  doi: 10.1007/PL00001426.
    [12] M. M. CavalcantiV. N. Domingos Cavalcanti and I. Lasiecka, Well-posedness and optimal decay rates for the wave equation with nonlinear boundary damping–source interaction, Journal of Differential Equations, 236 (2007), 407-459.  doi: 10.1016/j.jde.2007.02.004.
    [13] J. CollianderJ. Holmer and N. Tzirakis, Low regularity global well-posedness for the Zakharov and Klein-Gordon-Schrödinger systems, Trans. Amer. Soc. Math., 360 (2008), 4619-4638.  doi: 10.1090/S0002-9947-08-04295-5.
    [14] Z. Dai and P. Gao, Exponential attractor for dissipative Klein-Gordon-Schrödinger equations in ${{\bf{R}}^{\bf{3}}}$, Chim. Ann. Math. Ser. A., 21 (2000), 241-250. 
    [15] M. DaoulatliI. Lasiecka and D. Toundykov, Uniform energy decay for a wave equation with partially supported nonlinear boundary dissipation without growth restrictions, Discrete Continuous Dynamical Systems - S, 2 (2009), 67-94.  doi: 10.3934/dcdss.2009.2.67.
    [16] B. DehmanP. Gérard and G. Lebeau, Stabilization and control for the nonlinear Schrödinger equation on a compact surface, Math Z., 254 (2006), 729-749.  doi: 10.1007/s00209-006-0005-3.
    [17] I. Fukuda and M. Tsutsumi, On coupled Klein-Gordon-Schrödinger equations Ⅰ, Bull. Sci. Engrg. Res. Lab. Waseda Univ., 69 (1975), 51-62. 
    [18] I. Fukuda and M. Tsutsumi, On coupled Klein-Gordon-Schrödinger equations Ⅱ, J. Math. Analysis Applic., 66 (1978), 358-378.  doi: 10.1016/0022-247X(78)90239-1.
    [19] I. Fukuda and M. Tsutsumi, On coupled Klein-Gordon Schrödinger equations Ⅲ - Higher order interaction, decay and blow-up, Math. Japonica, 24 (1979), 307-321. 
    [20] I. Fukuda and M. Tsutsumi, On the Yukawa-coupled Klein-Gordon-Schödinger equations in three space dimensions, Proc. Japan Acad., 51 (1975), 402-405.  doi: 10.3792/pja/1195518563.
    [21] O. GoubetA. Hakim and A. Mostafa, Regularity of the attractor for a coupled Klein-Gordon-Schrödinger system, Diff. Integal Equ., 16 (2003), 573-581. 
    [22] B. Guo and Y. Li, Attractor for dissipative Klein-Gordon-Schrödinger equations in ${{\bf{R}}^{\bf{3}}}$, Journal of Differential Equations, 136 (1997), 356-377.  doi: 10.1006/jdeq.1996.3242.
    [23] B. Guo and Y. Li, Attractor for the dissipative generalized Klein-Gordon-Schrödinger equations, J. Partial Differ. Equations, 11 (1998), 260-272. 
    [24] B. Guo and Y. Li, Asymptotic smoothing effect of solutions to weakly dissipative Klein-Gordon-Schrödinger equations, J. Math. Anal. Appl., 282 (2003), 256-265.  doi: 10.1016/S0022-247X(03)00152-5.
    [25] Y. Han, On the Cauchy problem for the coupled Klein-Gordon-Schrödinger system with rough data, Discret. Contin. Dyn. Syst., 12 (2005), 233-242.  doi: 10.3934/dcds.2005.12.233.
    [26] N. Hayashi, Global strong solutions of coupled Klein-Gordon-Schrödinger equations, Funkcialaj Ekvacioj, 29 (1986), 299-307. 
    [27] N. Hayashi and W. Von Wahl, On the global strong solutions of coupled Klein-Gordon-Schrödinger equations, J. Math. Soc. Japan, 39 (1987), 489-497.  doi: 10.2969/jmsj/03930489.
    [28] H. Lange and B. Wang, Regularity of the global attractor for the Klein-Gordon-Schrödinger equation, Math. Methods Appl. Sci., 22 (1999), 1535-1554.  doi: 10.1002/(SICI)1099-1476(19991125)22:17<1535::AID-MMA92>3.0.CO;2-5.
    [29] H. Lange and B. Wang, Attractors for the Klein-Gordon-Schrödinger equation, J. Math. Phys., 40 (1999), 2445-2457.  doi: 10.1063/1.532875.
    [30] I. Lasiecka and D. Tataru, Uniform boundary stabilization of semilinear wave equations with nonlinear boundary damping, Diffenrential and Integral Equations, 6 (1993), 507-533. 
    [31] I. Lasiecka and D. Toundykov, Energy decay rates for the semilinear wave equation with nonlinear localized damping and source terms, Nonlinear Analysis: Theory, Methods Applications, 64 (2006), 1757-1797.  doi: 10.1016/j.na.2005.07.024.
    [32] G. Lebeau, Controle de l'equation de Schrödinger. (french) [control of the Schrödinger equation], J. Math. Pures Appl., (9) 71 (1992), 267–291.
    [33] Y. Li, Q. Shi, C. Wang and S. Wang, Well-posedness for the nonlinear Klein-Gordon-Schrödinger equations with heterointeractions, J. Math. Phys., 51 (2010), 032102, 17pp. doi: 10.1063/1.3317646.
    [34] J. L. Lions, Quelques Métodes de Résolution des Problèmes Aux Limites Non Linéaires, Dunod, Paris, 1969.
    [35] J. L. Lions, Controlabilité Exacte, Perturbations et Stabilisation de Systèmes Distribués, Tome 1, Masson, Paris, 1988.
    [36] E. Machtyngier, Exact controllability for the Schrödinger equation, J. Control and Optimization, 32 (1994), 24-34.  doi: 10.1137/S0363012991223145.
    [37] C. Miao and G. Xu, Global solutions of the Klein-Gordon-Schrödinger system with rough data in $\mathbb{R}^{2+1}$, J. Differ. Equ., 227 (2006), 365-405.  doi: 10.1016/j.jde.2005.10.012.
    [38] M. Ohta, Stability of stationary states for the coupled Klein-Gordon-Schrödinger equations, Nonlinear Analysis, Theory, Methods and Appl., 27 (1996), 455-461.  doi: 10.1016/0362-546X(95)00017-P.
    [39] T. Ozawa and Y. Tsutsumi, Asymptotic behaviour of solutions for the coupled Klein-Gordon-Schrödinger equations, Adv. Stud. Pure Math., 23 (1994), 295-305.  doi: 10.2969/aspm/02310295.
    [40] H. Pecher, Global solutions of the Klein-Gordon-Schrödinger system with rough data, Differ. Int. Equ., 17 (2004), 179-214. 
    [41] M. N. Poulou and N. M. Stavrakakis, Global attractor for a system of Klein-Gordon-Schrödinger type in all R, Nonlinear Anal., 74 (2011), 2548-2562.  doi: 10.1016/j.na.2010.12.009.
    [42] M. N. Poulou and N. M. Stavrakakis, Uniform decay for a local dissipative Klein-Gordon-Schrödinger type system, Electron. J. Differential Equations, 2012 (2012), 16 pp.
    [43] A. Shimomura, Scattering theory for the coupled Klein-Gordon-Schrödinger equations in two space dimensions, J. Math. Sci. Univ. Tokyo, 10 (2003), 661-685. 
    [44] A. Shimomura, Scattering theory for the coupled Klein-Gordon-Schrödinger equations in two space dimensions. Ⅱ, Hokkaido Math. J., 34 (2005), 405-433.  doi: 10.14492/hokmj/1285766230.
    [45] N. Tzirakis, The Cauchy problem for the Klein-Gordon-Schrödinger system in low dimensions below the energy space, Comm. Partial Differ. Equ., 30 (2005), 605-641.  doi: 10.1081/PDE-200059260.
    [46] B. Wang, Classical global solutions for non-linear Klein-Gordon-Schrödinger equations, Math. Methods Appl. Sci., 20 (1997), 599-616.  doi: 10.1002/(SICI)1099-1476(19970510)20:7<599::AID-MMA866>3.0.CO;2-7.
    [47] H. Yukawa, On the interaction of elementary particles Ⅰ, Proc. Physico-Math. Soc. Japan, 17 (1935), 48-57. 
  • 加载中

Figures(1)

SHARE

Article Metrics

HTML views(469) PDF downloads(310) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return