    December  2019, 8(4): 883-902. doi: 10.3934/eect.2019043

## Sliding mode control of the Hodgkin–Huxley mathematical model

 1 Dipartimento di Matematica "F. Enriques", Università degli Studi di Milano, Via C. Saldini 50, 20133 Milano, Italy 2 "Gheorghe Mihoc-Caius Iacob" Institute of Mathematical Statistics and Applied Mathematics of the Romanian Academy, Calea 13 Septembrie 13, Bucharest, Romania 3 Research Group of the Project PN-Ⅲ-P4-ID-PCE-2016-0372, Simion Stoilow Institute of Mathematics of the Romanian Academy, Bucharest, Romania 4 Istituto di Matematica Applicata e Tecnologie Informatiche "E. Magenes", CNR, Via Ferrata 1, 27100 Pavia, Italy

* Corresponding author: Gabriela Marinoschi

Received  January 2019 Published  June 2019

In this paper we deal with a feedback control design for the action potential of a neuronal membrane in relation with the non-linear dynamics of the Hodgkin-Huxley mathematical model. More exactly, by using an external current as a control expressed by a relay graph in the equation of the potential, we aim at forcing it to reach a certain manifold in finite time and to slide on it after that. From the mathematical point of view we solve a system involving a parabolic differential inclusion and three nonlinear differential equations via an approximating technique and a fixed point result. The existence of the sliding mode and the determination of the time at which the potential reaches the prescribed manifold are proved by a maximum principle argument. Numerical simulations are presented.

Citation: Cecilia Cavaterra, Denis Enăchescu, Gabriela Marinoschi. Sliding mode control of the Hodgkin–Huxley mathematical model. Evolution Equations & Control Theory, 2019, 8 (4) : 883-902. doi: 10.3934/eect.2019043
##### References:
  V. Barbu, Nonlinear Differential Equations of Monotone Type in Banach Spaces, Springer, New York, 2010. doi: 10.1007/978-1-4419-5542-5.  Google Scholar  V. Barbu, P. Colli, G. Gilardi, G. Marinoschi and E. Rocca, Sliding mode control for a nonlinear phase-field system, SIAM J. Control Optim., 55 (2017), 2108-2133.  doi: 10.1137/15M102424X.  Google Scholar  E. N. Best, Null space in the Hodgkin-Huxley equations, A critical test, Biophys. J., 27 (1979), 87-104.  doi: 10.1016/S0006-3495(79)85204-2. Google Scholar  C. Cavaterra and M. Grasselli, Robust exponential attractors for singularly perturbed Hodgkin-Huxley equations, J. Differential Equations, 246 (2009), 4670-4701.  doi: 10.1016/j.jde.2008.12.025.  Google Scholar  F. R. Chavarette, J. M. Balthazar, M. Rafikov and H. A. Hermini, On non-linear dynamics and an optimal control synthesis of the action potential of membranes (ideal and non-ideal cases) of the Hodgkin-Huxley (HH) mathematical model, Chaos, Solitons and Fractals, 39 (2009), 1651-1666.  doi: 10.1016/j.chaos.2007.06.016.  Google Scholar  Y. Che, J. Wang, B. Deng, X. Wei and C. Han, Bifurcations in the hodgkin–huxley model exposed to DC electric fields, Neurocomputing, 81 (2012), 41-48.  doi: 10.1016/j.neucom.2011.11.019. Google Scholar  Y. Che, B. Liu, H. Li, M. Lu, J. Wang and X. Wei, Robust stabilization control of bifurcations in Hodgkin-Huxley model with aid of unscented Kalman filter, Chaos, Solitons and Fractals, 101 (2017), 92-99.  doi: 10.1016/j.chaos.2017.04.045.  Google Scholar  P. Colli, M. Colturato, Global existence for a singular phase field system related to a sliding mode control problem, Nonlinear Anal. Real World Appl. 41 (2018), 128-151. doi: 10.1016/j.nonrwa.2017.10.011.  Google Scholar  P. Colli, G. Gilardi, G. Marinoschi and E. Rocca, Sliding mode control for phase field system related to tumor growth, Appl. Math.Optimiz., 79 (2019), 647-670.  doi: 10.1007/s00245-017-9451-z.  Google Scholar  J. Cronin, Mathematical Aspects of Hodgkin-Huxley Neural Theory, Cambridge Univ. Press, Cambridge, 1987.  doi: 10.1017/CBO9780511983955.  Google Scholar  J. R. Dormand and P. J. Prince, A family of embedded Runge-Kutta formulae, J. Comp. Appl. Math., 6 (1980), 19-26.  doi: 10.1016/0771-050X(80)90013-3.  Google Scholar  R. Ozgur Doruk, Feedback controlled electrical nerve stimulation: A computer simulation, Computer Methods and Programs in Biomedicine, 99 (2010), 98-112.  doi: 10.1016/j.cmpb.2010.01.006. Google Scholar  R. Ozgur Doruk, Control of repetitive firing in Hodgkin-Huxley nerve fibers using electric fields, Chaos, Solitons & Fractals, 52 (2013), 66-72.  doi: 10.1016/j.chaos.2013.04.003.  Google Scholar  J. W. Evans, Nerve axon equations Ⅰ: Linear approximations, Indiana Univ. Math. J., 21 (1972), 877-885.  doi: 10.1512/iumj.1972.21.21071.  Google Scholar  J. W. Evans, Nerve axon equations Ⅱ: stability at rest, Indiana Univ. Math. J., 22 (1972), 75-90.  doi: 10.1512/iumj.1973.22.22009.  Google Scholar  J. W. Evans, Nerve axon equations Ⅲ: stability of the nerve impulse, Indiana Univ. Math. J., 22 (1972), 577-593.  doi: 10.1512/iumj.1973.22.22048.  Google Scholar  J. W. Evans and N. A. Shenk, Solutions to axon equations, Biophys. J., 10 (1970), 1090-1101.  doi: 10.1016/S0006-3495(70)86355-X. Google Scholar  W. E. Fitzgibbon, M.E. Parrott, Y.You, Global dynamics of singularly perturbed Hodgkin-Huxley equations, In: Semigroups of Linear and Nonlinear Operations and Applications (eds. G. Ruiz Goldstein, J. Goldstein), Springer Science+ Business Media B.V., Dordrecht, (1993), 159–176. Google Scholar  W. E. Fitzgibbon, M. E. Parrott and Y. You, Finite dimensionality and uppper semicontinuity of the global attractor of singularly perturbed Hodgkin Huxley systems, J. Diff. Equations, 129 (1996), 193-237.  doi: 10.1006/jdeq.1996.0116.  Google Scholar  A. L. Hodgkin and A. F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve, J. Physiol., 117 (1952), 500-544.   Google Scholar  J. L. Lions, Quelques Méthodes de R ésolution des Problèmes aux Limites non Linéaires, Dunod, Paris, 1969. Google Scholar  M. Mascagni, An initial–boundary value problem of physiological significance for equations of nerve conduction, Comm. Pure Appl. Math., 42 (1989), 213-227.  doi: 10.1002/cpa.3160420206.  Google Scholar  L. F. Shampine and M. W. Reichelt, The MATLAB ODE Suite, SIAM Journal on Scientific Computing, 18 (1997), 1-22.  doi: 10.1137/S1064827594276424.  Google Scholar  R. D. Skeel and M. Berzins, A method for the spatial discretization of parabolic equations in one space variable, SIAM Journal on Scientific and Statistical Computing, 11 (1990), 1-32.  doi: 10.1137/0911001.  Google Scholar

show all references

##### References:
  V. Barbu, Nonlinear Differential Equations of Monotone Type in Banach Spaces, Springer, New York, 2010. doi: 10.1007/978-1-4419-5542-5.  Google Scholar  V. Barbu, P. Colli, G. Gilardi, G. Marinoschi and E. Rocca, Sliding mode control for a nonlinear phase-field system, SIAM J. Control Optim., 55 (2017), 2108-2133.  doi: 10.1137/15M102424X.  Google Scholar  E. N. Best, Null space in the Hodgkin-Huxley equations, A critical test, Biophys. J., 27 (1979), 87-104.  doi: 10.1016/S0006-3495(79)85204-2. Google Scholar  C. Cavaterra and M. Grasselli, Robust exponential attractors for singularly perturbed Hodgkin-Huxley equations, J. Differential Equations, 246 (2009), 4670-4701.  doi: 10.1016/j.jde.2008.12.025.  Google Scholar  F. R. Chavarette, J. M. Balthazar, M. Rafikov and H. A. Hermini, On non-linear dynamics and an optimal control synthesis of the action potential of membranes (ideal and non-ideal cases) of the Hodgkin-Huxley (HH) mathematical model, Chaos, Solitons and Fractals, 39 (2009), 1651-1666.  doi: 10.1016/j.chaos.2007.06.016.  Google Scholar  Y. Che, J. Wang, B. Deng, X. Wei and C. Han, Bifurcations in the hodgkin–huxley model exposed to DC electric fields, Neurocomputing, 81 (2012), 41-48.  doi: 10.1016/j.neucom.2011.11.019. Google Scholar  Y. Che, B. Liu, H. Li, M. Lu, J. Wang and X. Wei, Robust stabilization control of bifurcations in Hodgkin-Huxley model with aid of unscented Kalman filter, Chaos, Solitons and Fractals, 101 (2017), 92-99.  doi: 10.1016/j.chaos.2017.04.045.  Google Scholar  P. Colli, M. Colturato, Global existence for a singular phase field system related to a sliding mode control problem, Nonlinear Anal. Real World Appl. 41 (2018), 128-151. doi: 10.1016/j.nonrwa.2017.10.011.  Google Scholar  P. Colli, G. Gilardi, G. Marinoschi and E. Rocca, Sliding mode control for phase field system related to tumor growth, Appl. Math.Optimiz., 79 (2019), 647-670.  doi: 10.1007/s00245-017-9451-z.  Google Scholar  J. Cronin, Mathematical Aspects of Hodgkin-Huxley Neural Theory, Cambridge Univ. Press, Cambridge, 1987.  doi: 10.1017/CBO9780511983955.  Google Scholar  J. R. Dormand and P. J. Prince, A family of embedded Runge-Kutta formulae, J. Comp. Appl. Math., 6 (1980), 19-26.  doi: 10.1016/0771-050X(80)90013-3.  Google Scholar  R. Ozgur Doruk, Feedback controlled electrical nerve stimulation: A computer simulation, Computer Methods and Programs in Biomedicine, 99 (2010), 98-112.  doi: 10.1016/j.cmpb.2010.01.006. Google Scholar  R. Ozgur Doruk, Control of repetitive firing in Hodgkin-Huxley nerve fibers using electric fields, Chaos, Solitons & Fractals, 52 (2013), 66-72.  doi: 10.1016/j.chaos.2013.04.003.  Google Scholar  J. W. Evans, Nerve axon equations Ⅰ: Linear approximations, Indiana Univ. Math. J., 21 (1972), 877-885.  doi: 10.1512/iumj.1972.21.21071.  Google Scholar  J. W. Evans, Nerve axon equations Ⅱ: stability at rest, Indiana Univ. Math. J., 22 (1972), 75-90.  doi: 10.1512/iumj.1973.22.22009.  Google Scholar  J. W. Evans, Nerve axon equations Ⅲ: stability of the nerve impulse, Indiana Univ. Math. J., 22 (1972), 577-593.  doi: 10.1512/iumj.1973.22.22048.  Google Scholar  J. W. Evans and N. A. Shenk, Solutions to axon equations, Biophys. J., 10 (1970), 1090-1101.  doi: 10.1016/S0006-3495(70)86355-X. Google Scholar  W. E. Fitzgibbon, M.E. Parrott, Y.You, Global dynamics of singularly perturbed Hodgkin-Huxley equations, In: Semigroups of Linear and Nonlinear Operations and Applications (eds. G. Ruiz Goldstein, J. Goldstein), Springer Science+ Business Media B.V., Dordrecht, (1993), 159–176. Google Scholar  W. E. Fitzgibbon, M. E. Parrott and Y. You, Finite dimensionality and uppper semicontinuity of the global attractor of singularly perturbed Hodgkin Huxley systems, J. Diff. Equations, 129 (1996), 193-237.  doi: 10.1006/jdeq.1996.0116.  Google Scholar  A. L. Hodgkin and A. F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve, J. Physiol., 117 (1952), 500-544.   Google Scholar  J. L. Lions, Quelques Méthodes de R ésolution des Problèmes aux Limites non Linéaires, Dunod, Paris, 1969. Google Scholar  M. Mascagni, An initial–boundary value problem of physiological significance for equations of nerve conduction, Comm. Pure Appl. Math., 42 (1989), 213-227.  doi: 10.1002/cpa.3160420206.  Google Scholar  L. F. Shampine and M. W. Reichelt, The MATLAB ODE Suite, SIAM Journal on Scientific Computing, 18 (1997), 1-22.  doi: 10.1137/S1064827594276424.  Google Scholar  R. D. Skeel and M. Berzins, A method for the spatial discretization of parabolic equations in one space variable, SIAM Journal on Scientific and Statistical Computing, 11 (1990), 1-32.  doi: 10.1137/0911001.  Google Scholar Graphics $v(t, 0)$ (left), $v(t, x)$ (center), $n$, $m$, $h$ (right) for $v_0 = 4.82$, $v^* = 0$, $\rho = 0$ Graphics $v(t, 0)$ (left), $v(t, x)$ (center), $n$, $m$, $h$ (right) for $v_0 = 4.82$, $v^* = 0$, $\rho = 20$ Graphics $v(t, 0)$ (left), $v(t, x)$ (center), $n$, $m$, $h$ (right) for $v_0 = 4.82$, $v^* = 0.5\sin(4/\pi *t)+0.6$, $\rho = 20$ Graphics $v(t, 0)$ (left), $v(t, x)$ (center), $n$, $m$, $h$ (right) for $v_0 = 4.82$, $v^* = 0$, $\rho = 0$, $g_K = 3.8229$ Graphics $v(t, 0)$ (left), $v(t, x)$ (center), $n$, $m$, $h$ (right) for $v_0 = 4.82$, $v^* = 0$, $\rho = 20$, $g_K = 3.8229$ Graphics $v(t, 0)$ (left), $v(t, x)$ (center), $n$, $m$, $h$ at $x = 0.5$ (right) for $v_0 = 0.5sin(4\pi x)+0.6$, $v^* = 0$, $\delta = 50$, $g_K = 36$, $\rho = 50$
  Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434  Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316  Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321  H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433  Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242  Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319  Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076  Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249  Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444  Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137  Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020347  Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380  Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118  Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032  Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297  Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272  Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020379  Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436  Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $L^2-$norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077  Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

2019 Impact Factor: 0.953