\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Global exact controllability to the trajectories of the Kuramoto-Sivashinsky equation

  • * Corresponding author: Peng Gao

    * Corresponding author: Peng Gao

This work is supported by Foundation of State Key Laboratory of Automotive Simulation and Control and NSFC Grant (11601073)

Abstract Full Text(HTML) Related Papers Cited by
  • In this paper, we establish the global exact controllability to the trajectories of the Kuramoto-Sivashinsky equation by five controls: one control is the right member of the equation and is constant with respect to the space variable, the four others are the boundary controls.

    Mathematics Subject Classification: Primary: 93B05; Secondary: 35K55.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] N. Carreño and P. Guzmán, On the cost of null controllability of a fourth order parabolic equation, Journal of Differential Equations, 261 (2016), 6485-6520.  doi: 10.1016/j.jde.2016.08.042.
    [2] E. CerpaA. Mercado and A. Pazoto, Null controllability of the stabilized Kuramoto-Sivashinsky system with one distributed control, SIAM J. Control Optim., 53 (2015), 1543-1568.  doi: 10.1137/130947969.
    [3] E. Cerpa, Null controllability and stabilization of the linear Kuramoto-Sivashinsky equation, Commun. Pure Appl. Anal., 9 (2010), 91-102.  doi: 10.3934/cpaa.2010.9.91.
    [4] E. Cerpa and A. Mercado, Local exact controllability to the trajectories of the 1-D Kuramoto-Sivashinsky equation, J. Differential Equations, 250 (2011), 2024-2044.  doi: 10.1016/j.jde.2010.12.015.
    [5] E. CerpaP. Guzmán and A. Mercado, On the control of the linear Kuramoto-Sivashinsky equation, ESAIM: Control, Optimisation and Calculus of Variations, 23 (2017), 165-194.  doi: 10.1051/cocv/2015044.
    [6] M. Chapouly, Global controllability of nonviscous and viscous Burgers type equations, SIAM J. Control Optim., 48 (2009), 1567-1599.  doi: 10.1137/070685749.
    [7] M. Chapouly, Global controllability of a nonlinear Korteweg-de Vries equation, Communications in Contemporary Mathematics, 11 (2009), 495-521.  doi: 10.1142/S0219199709003454.
    [8] L. H. Chen and H. C. Chang, Nonlinear waves on liquid film surfaces-Ⅱ. Bifurcation analyses of the long-wave equation, Chem. Eng. Sci., 41 (1986), 2477-2486. 
    [9] P. Gao, A new global Carleman estimate for the one-dimensional Kuramoto-Sivashinsky equation and applications to exact controllability to the trajectories and an inverse problem, Nonlinear Anal., 117 (2015), 133-147.  doi: 10.1016/j.na.2015.01.015.
    [10] P. Gao, A new global Carleman estimate for Cahn-Hilliard type equation and its applications, J. Differential Equations, 260 (2016), 427-444.  doi: 10.1016/j.jde.2015.08.053.
    [11] P. Gao, Local exact controllability to the trajectories of the Swift-Hohenberg equation, Nonlinear Anal., 139 (2016), 169-195.  doi: 10.1016/j.na.2016.02.023.
    [12] P. Gao, Null controllability of the viscous Camassa-Holm equation with moving control, Proc. Indian Acad. Sci. Math. Sci., 126 (2016), 99-108.  doi: 10.1007/s12044-015-0262-3.
    [13] P. Gao, Null controllability with constraints on the state for the 1-D Kuramoto-Sivashinsky equation, Evol. Equ. Control Theory, 4 (2015), 281-296.  doi: 10.3934/eect.2015.4.281.
    [14] A. González and A. Castellanos, Nonlinear electrohydrodynamic waves on films falling down an inclined plane, Phys. Rev. E., 53 (1996), 3573-3578.  doi: 10.1103/PhysRevE.53.3573.
    [15] P. Guzmán, Local exact controllability to the trajectories of the Cahn-Hilliard equation, Applied Mathematics & Optimization, (2015), 1–28.
    [16] A. P. Hooper and R. Grimshaw, Nonlinear instability at the interface between two viscous fluids, Phys. Fluids, 28 (1985), 37-45.  doi: 10.1063/1.865160.
    [17] Y. Kuramoto and T. Tsuzuki, On the formation of dissipative structures in reaction-diffusion systems, Theor. Phys., 54 (1975), 687-699. 
    [18] Y. Kuramoto, Diffusion-induced chaos in reaction systems, Suppl. Prog. Theor. Phys., 64 (1978), 346-367.  doi: 10.1143/PTPS.64.346.
    [19] Y. Kuramoto and T. Tsuzuki, Persistent propagation of concentration waves in dissipative media far from thermal equilibrium, Prog. Theor. Phys., 55 (1976), 356-369.  doi: 10.1143/PTP.55.356.
    [20] L. Rosier and B.-Y. Zhang, Global stabilization of the generalized Korteweg-de Vries equation posed on a finite domain, SIAM Journal on Control and Optimization, 45 (2006), 927-956.  doi: 10.1137/050631409.
    [21] G. I. Sivashinsky, Nonlinear analysis of hydrodynamic instability in laminar flames-I Derivation of basic equations, Acta Astronaut., 4 (1977), 1177-1206.  doi: 10.1016/0094-5765(77)90096-0.
  • 加载中
SHARE

Article Metrics

HTML views(378) PDF downloads(370) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return