In this paper, we establish the global exact controllability to the trajectories of the Kuramoto-Sivashinsky equation by five controls: one control is the right member of the equation and is constant with respect to the space variable, the four others are the boundary controls.
Citation: |
[1] |
N. Carreño and P. Guzmán, On the cost of null controllability of a fourth order parabolic equation, Journal of Differential Equations, 261 (2016), 6485-6520.
doi: 10.1016/j.jde.2016.08.042.![]() ![]() ![]() |
[2] |
E. Cerpa, A. Mercado and A. Pazoto, Null controllability of the stabilized Kuramoto-Sivashinsky system with one distributed control, SIAM J. Control Optim., 53 (2015), 1543-1568.
doi: 10.1137/130947969.![]() ![]() ![]() |
[3] |
E. Cerpa, Null controllability and stabilization of the linear Kuramoto-Sivashinsky equation, Commun. Pure Appl. Anal., 9 (2010), 91-102.
doi: 10.3934/cpaa.2010.9.91.![]() ![]() ![]() |
[4] |
E. Cerpa and A. Mercado, Local exact controllability to the trajectories of the 1-D Kuramoto-Sivashinsky equation, J. Differential Equations, 250 (2011), 2024-2044.
doi: 10.1016/j.jde.2010.12.015.![]() ![]() ![]() |
[5] |
E. Cerpa, P. Guzmán and A. Mercado, On the control of the linear Kuramoto-Sivashinsky equation, ESAIM: Control, Optimisation and Calculus of Variations, 23 (2017), 165-194.
doi: 10.1051/cocv/2015044.![]() ![]() ![]() |
[6] |
M. Chapouly, Global controllability of nonviscous and viscous Burgers type equations, SIAM J. Control Optim., 48 (2009), 1567-1599.
doi: 10.1137/070685749.![]() ![]() ![]() |
[7] |
M. Chapouly, Global controllability of a nonlinear Korteweg-de Vries equation, Communications in Contemporary Mathematics, 11 (2009), 495-521.
doi: 10.1142/S0219199709003454.![]() ![]() ![]() |
[8] |
L. H. Chen and H. C. Chang, Nonlinear waves on liquid film surfaces-Ⅱ. Bifurcation analyses of the long-wave equation, Chem. Eng. Sci., 41 (1986), 2477-2486.
![]() |
[9] |
P. Gao, A new global Carleman estimate for the one-dimensional Kuramoto-Sivashinsky equation and applications to exact controllability to the trajectories and an inverse problem, Nonlinear Anal., 117 (2015), 133-147.
doi: 10.1016/j.na.2015.01.015.![]() ![]() ![]() |
[10] |
P. Gao, A new global Carleman estimate for Cahn-Hilliard type equation and its applications, J. Differential Equations, 260 (2016), 427-444.
doi: 10.1016/j.jde.2015.08.053.![]() ![]() ![]() |
[11] |
P. Gao, Local exact controllability to the trajectories of the Swift-Hohenberg equation, Nonlinear Anal., 139 (2016), 169-195.
doi: 10.1016/j.na.2016.02.023.![]() ![]() ![]() |
[12] |
P. Gao, Null controllability of the viscous Camassa-Holm equation with moving control, Proc. Indian Acad. Sci. Math. Sci., 126 (2016), 99-108.
doi: 10.1007/s12044-015-0262-3.![]() ![]() ![]() |
[13] |
P. Gao, Null controllability with constraints on the state for the 1-D Kuramoto-Sivashinsky equation, Evol. Equ. Control Theory, 4 (2015), 281-296.
doi: 10.3934/eect.2015.4.281.![]() ![]() ![]() |
[14] |
A. González and A. Castellanos, Nonlinear electrohydrodynamic waves on films falling down an inclined plane, Phys. Rev. E., 53 (1996), 3573-3578.
doi: 10.1103/PhysRevE.53.3573.![]() ![]() |
[15] |
P. Guzmán, Local exact controllability to the trajectories of the Cahn-Hilliard equation, Applied Mathematics & Optimization, (2015), 1–28.
![]() |
[16] |
A. P. Hooper and R. Grimshaw, Nonlinear instability at the interface between two viscous fluids, Phys. Fluids, 28 (1985), 37-45.
doi: 10.1063/1.865160.![]() ![]() |
[17] |
Y. Kuramoto and T. Tsuzuki, On the formation of dissipative structures in reaction-diffusion systems, Theor. Phys., 54 (1975), 687-699.
![]() |
[18] |
Y. Kuramoto, Diffusion-induced chaos in reaction systems, Suppl. Prog. Theor. Phys., 64 (1978), 346-367.
doi: 10.1143/PTPS.64.346.![]() ![]() |
[19] |
Y. Kuramoto and T. Tsuzuki, Persistent propagation of concentration waves in dissipative media far from thermal equilibrium, Prog. Theor. Phys., 55 (1976), 356-369.
doi: 10.1143/PTP.55.356.![]() ![]() |
[20] |
L. Rosier and B.-Y. Zhang, Global stabilization of the generalized Korteweg-de Vries equation posed on a finite domain, SIAM Journal on Control and Optimization, 45 (2006), 927-956.
doi: 10.1137/050631409.![]() ![]() ![]() |
[21] |
G. I. Sivashinsky, Nonlinear analysis of hydrodynamic instability in laminar flames-I Derivation of basic equations, Acta Astronaut., 4 (1977), 1177-1206.
doi: 10.1016/0094-5765(77)90096-0.![]() ![]() ![]() |