doi: 10.3934/eect.2020002

Global exact controllability to the trajectories of the Kuramoto-Sivashinsky equation

1. 

State Key Laboratory of Automotive Simulaion and Control, Jilin University, Changchun 130012, China

2. 

School of Mathematics and Statistics and Center for Mathematics and Interdisciplinary Sciences, Northeast Normal University, Changchun 130024, China

* Corresponding author: Peng Gao

Received  October 2018 Revised  March 2019 Published  August 2019

Fund Project: This work is supported by Foundation of State Key Laboratory of Automotive Simulation and Control and NSFC Grant (11601073)

In this paper, we establish the global exact controllability to the trajectories of the Kuramoto-Sivashinsky equation by five controls: one control is the right member of the equation and is constant with respect to the space variable, the four others are the boundary controls.

Citation: Peng Gao. Global exact controllability to the trajectories of the Kuramoto-Sivashinsky equation. Evolution Equations & Control Theory, doi: 10.3934/eect.2020002
References:
[1]

N. Carreño and P. Guzmán, On the cost of null controllability of a fourth order parabolic equation, Journal of Differential Equations, 261 (2016), 6485-6520. doi: 10.1016/j.jde.2016.08.042. Google Scholar

[2]

E. CerpaA. Mercado and A. Pazoto, Null controllability of the stabilized Kuramoto-Sivashinsky system with one distributed control, SIAM J. Control Optim., 53 (2015), 1543-1568. doi: 10.1137/130947969. Google Scholar

[3]

E. Cerpa, Null controllability and stabilization of the linear Kuramoto-Sivashinsky equation, Commun. Pure Appl. Anal., 9 (2010), 91-102. doi: 10.3934/cpaa.2010.9.91. Google Scholar

[4]

E. Cerpa and A. Mercado, Local exact controllability to the trajectories of the 1-D Kuramoto-Sivashinsky equation, J. Differential Equations, 250 (2011), 2024-2044. doi: 10.1016/j.jde.2010.12.015. Google Scholar

[5]

E. CerpaP. Guzmán and A. Mercado, On the control of the linear Kuramoto-Sivashinsky equation, ESAIM: Control, Optimisation and Calculus of Variations, 23 (2017), 165-194. doi: 10.1051/cocv/2015044. Google Scholar

[6]

M. Chapouly, Global controllability of nonviscous and viscous Burgers type equations, SIAM J. Control Optim., 48 (2009), 1567-1599. doi: 10.1137/070685749. Google Scholar

[7]

M. Chapouly, Global controllability of a nonlinear Korteweg-de Vries equation, Communications in Contemporary Mathematics, 11 (2009), 495-521. doi: 10.1142/S0219199709003454. Google Scholar

[8]

L. H. Chen and H. C. Chang, Nonlinear waves on liquid film surfaces-Ⅱ. Bifurcation analyses of the long-wave equation, Chem. Eng. Sci., 41 (1986), 2477-2486. Google Scholar

[9]

P. Gao, A new global Carleman estimate for the one-dimensional Kuramoto-Sivashinsky equation and applications to exact controllability to the trajectories and an inverse problem, Nonlinear Anal., 117 (2015), 133-147. doi: 10.1016/j.na.2015.01.015. Google Scholar

[10]

P. Gao, A new global Carleman estimate for Cahn-Hilliard type equation and its applications, J. Differential Equations, 260 (2016), 427-444. doi: 10.1016/j.jde.2015.08.053. Google Scholar

[11]

P. Gao, Local exact controllability to the trajectories of the Swift-Hohenberg equation, Nonlinear Anal., 139 (2016), 169-195. doi: 10.1016/j.na.2016.02.023. Google Scholar

[12]

P. Gao, Null controllability of the viscous Camassa-Holm equation with moving control, Proc. Indian Acad. Sci. Math. Sci., 126 (2016), 99-108. doi: 10.1007/s12044-015-0262-3. Google Scholar

[13]

P. Gao, Null controllability with constraints on the state for the 1-D Kuramoto-Sivashinsky equation, Evol. Equ. Control Theory, 4 (2015), 281-296. doi: 10.3934/eect.2015.4.281. Google Scholar

[14]

A. González and A. Castellanos, Nonlinear electrohydrodynamic waves on films falling down an inclined plane, Phys. Rev. E., 53 (1996), 3573-3578. doi: 10.1103/PhysRevE.53.3573. Google Scholar

[15]

P. Guzmán, Local exact controllability to the trajectories of the Cahn-Hilliard equation, Applied Mathematics & Optimization, (2015), 1–28.Google Scholar

[16]

A. P. Hooper and R. Grimshaw, Nonlinear instability at the interface between two viscous fluids, Phys. Fluids, 28 (1985), 37-45. doi: 10.1063/1.865160. Google Scholar

[17]

Y. Kuramoto and T. Tsuzuki, On the formation of dissipative structures in reaction-diffusion systems, Theor. Phys., 54 (1975), 687-699. Google Scholar

[18]

Y. Kuramoto, Diffusion-induced chaos in reaction systems, Suppl. Prog. Theor. Phys., 64 (1978), 346-367. doi: 10.1143/PTPS.64.346. Google Scholar

[19]

Y. Kuramoto and T. Tsuzuki, Persistent propagation of concentration waves in dissipative media far from thermal equilibrium, Prog. Theor. Phys., 55 (1976), 356-369. doi: 10.1143/PTP.55.356. Google Scholar

[20]

L. Rosier and B.-Y. Zhang, Global stabilization of the generalized Korteweg-de Vries equation posed on a finite domain, SIAM Journal on Control and Optimization, 45 (2006), 927-956. doi: 10.1137/050631409. Google Scholar

[21]

G. I. Sivashinsky, Nonlinear analysis of hydrodynamic instability in laminar flames-I Derivation of basic equations, Acta Astronaut., 4 (1977), 1177-1206. doi: 10.1016/0094-5765(77)90096-0. Google Scholar

show all references

References:
[1]

N. Carreño and P. Guzmán, On the cost of null controllability of a fourth order parabolic equation, Journal of Differential Equations, 261 (2016), 6485-6520. doi: 10.1016/j.jde.2016.08.042. Google Scholar

[2]

E. CerpaA. Mercado and A. Pazoto, Null controllability of the stabilized Kuramoto-Sivashinsky system with one distributed control, SIAM J. Control Optim., 53 (2015), 1543-1568. doi: 10.1137/130947969. Google Scholar

[3]

E. Cerpa, Null controllability and stabilization of the linear Kuramoto-Sivashinsky equation, Commun. Pure Appl. Anal., 9 (2010), 91-102. doi: 10.3934/cpaa.2010.9.91. Google Scholar

[4]

E. Cerpa and A. Mercado, Local exact controllability to the trajectories of the 1-D Kuramoto-Sivashinsky equation, J. Differential Equations, 250 (2011), 2024-2044. doi: 10.1016/j.jde.2010.12.015. Google Scholar

[5]

E. CerpaP. Guzmán and A. Mercado, On the control of the linear Kuramoto-Sivashinsky equation, ESAIM: Control, Optimisation and Calculus of Variations, 23 (2017), 165-194. doi: 10.1051/cocv/2015044. Google Scholar

[6]

M. Chapouly, Global controllability of nonviscous and viscous Burgers type equations, SIAM J. Control Optim., 48 (2009), 1567-1599. doi: 10.1137/070685749. Google Scholar

[7]

M. Chapouly, Global controllability of a nonlinear Korteweg-de Vries equation, Communications in Contemporary Mathematics, 11 (2009), 495-521. doi: 10.1142/S0219199709003454. Google Scholar

[8]

L. H. Chen and H. C. Chang, Nonlinear waves on liquid film surfaces-Ⅱ. Bifurcation analyses of the long-wave equation, Chem. Eng. Sci., 41 (1986), 2477-2486. Google Scholar

[9]

P. Gao, A new global Carleman estimate for the one-dimensional Kuramoto-Sivashinsky equation and applications to exact controllability to the trajectories and an inverse problem, Nonlinear Anal., 117 (2015), 133-147. doi: 10.1016/j.na.2015.01.015. Google Scholar

[10]

P. Gao, A new global Carleman estimate for Cahn-Hilliard type equation and its applications, J. Differential Equations, 260 (2016), 427-444. doi: 10.1016/j.jde.2015.08.053. Google Scholar

[11]

P. Gao, Local exact controllability to the trajectories of the Swift-Hohenberg equation, Nonlinear Anal., 139 (2016), 169-195. doi: 10.1016/j.na.2016.02.023. Google Scholar

[12]

P. Gao, Null controllability of the viscous Camassa-Holm equation with moving control, Proc. Indian Acad. Sci. Math. Sci., 126 (2016), 99-108. doi: 10.1007/s12044-015-0262-3. Google Scholar

[13]

P. Gao, Null controllability with constraints on the state for the 1-D Kuramoto-Sivashinsky equation, Evol. Equ. Control Theory, 4 (2015), 281-296. doi: 10.3934/eect.2015.4.281. Google Scholar

[14]

A. González and A. Castellanos, Nonlinear electrohydrodynamic waves on films falling down an inclined plane, Phys. Rev. E., 53 (1996), 3573-3578. doi: 10.1103/PhysRevE.53.3573. Google Scholar

[15]

P. Guzmán, Local exact controllability to the trajectories of the Cahn-Hilliard equation, Applied Mathematics & Optimization, (2015), 1–28.Google Scholar

[16]

A. P. Hooper and R. Grimshaw, Nonlinear instability at the interface between two viscous fluids, Phys. Fluids, 28 (1985), 37-45. doi: 10.1063/1.865160. Google Scholar

[17]

Y. Kuramoto and T. Tsuzuki, On the formation of dissipative structures in reaction-diffusion systems, Theor. Phys., 54 (1975), 687-699. Google Scholar

[18]

Y. Kuramoto, Diffusion-induced chaos in reaction systems, Suppl. Prog. Theor. Phys., 64 (1978), 346-367. doi: 10.1143/PTPS.64.346. Google Scholar

[19]

Y. Kuramoto and T. Tsuzuki, Persistent propagation of concentration waves in dissipative media far from thermal equilibrium, Prog. Theor. Phys., 55 (1976), 356-369. doi: 10.1143/PTP.55.356. Google Scholar

[20]

L. Rosier and B.-Y. Zhang, Global stabilization of the generalized Korteweg-de Vries equation posed on a finite domain, SIAM Journal on Control and Optimization, 45 (2006), 927-956. doi: 10.1137/050631409. Google Scholar

[21]

G. I. Sivashinsky, Nonlinear analysis of hydrodynamic instability in laminar flames-I Derivation of basic equations, Acta Astronaut., 4 (1977), 1177-1206. doi: 10.1016/0094-5765(77)90096-0. Google Scholar

[1]

Eduardo Cerpa. Null controllability and stabilization of the linear Kuramoto-Sivashinsky equation. Communications on Pure & Applied Analysis, 2010, 9 (1) : 91-102. doi: 10.3934/cpaa.2010.9.91

[2]

D. Hilhorst, L. A. Peletier, A. I. Rotariu, G. Sivashinsky. Global attractor and inertial sets for a nonlocal Kuramoto-Sivashinsky equation. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 557-580. doi: 10.3934/dcds.2004.10.557

[3]

Kiah Wah Ong. Dynamic transitions of generalized Kuramoto-Sivashinsky equation. Discrete & Continuous Dynamical Systems - B, 2016, 21 (4) : 1225-1236. doi: 10.3934/dcdsb.2016.21.1225

[4]

Peng Gao. Null controllability with constraints on the state for the 1-D Kuramoto-Sivashinsky equation. Evolution Equations & Control Theory, 2015, 4 (3) : 281-296. doi: 10.3934/eect.2015.4.281

[5]

Aslihan Demirkaya. The existence of a global attractor for a Kuramoto-Sivashinsky type equation in 2D. Conference Publications, 2009, 2009 (Special) : 198-207. doi: 10.3934/proc.2009.2009.198

[6]

Milena Stanislavova, Atanas Stefanov. Effective estimates of the higher Sobolev norms for the Kuramoto-Sivashinsky equation. Conference Publications, 2009, 2009 (Special) : 729-738. doi: 10.3934/proc.2009.2009.729

[7]

Jared C. Bronski, Razvan C. Fetecau, Thomas N. Gambill. A note on a non-local Kuramoto-Sivashinsky equation. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 701-707. doi: 10.3934/dcds.2007.18.701

[8]

Piotr Zgliczyński. Steady state bifurcations for the Kuramoto-Sivashinsky equation: A computer assisted proof. Journal of Computational Dynamics, 2015, 2 (1) : 95-142. doi: 10.3934/jcd.2015.2.95

[9]

Yuncherl Choi, Jongmin Han, Chun-Hsiung Hsia. Bifurcation analysis of the damped Kuramoto-Sivashinsky equation with respect to the period. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 1933-1957. doi: 10.3934/dcdsb.2015.20.1933

[10]

L. Dieci, M. S Jolly, Ricardo Rosa, E. S. Van Vleck. Error in approximation of Lyapunov exponents on inertial manifolds: The Kuramoto-Sivashinsky equation. Discrete & Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 555-580. doi: 10.3934/dcdsb.2008.9.555

[11]

Peng Gao. Averaging principle for stochastic Kuramoto-Sivashinsky equation with a fast oscillation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (11) : 5649-5684. doi: 10.3934/dcds.2018247

[12]

Fred C. Pinto. Nonlinear stability and dynamical properties for a Kuramoto-Sivashinsky equation in space dimension two. Discrete & Continuous Dynamical Systems - A, 1999, 5 (1) : 117-136. doi: 10.3934/dcds.1999.5.117

[13]

Mudassar Imran, Youssef Raffoul, Muhammad Usman, Chi Zhang. A study of bifurcation parameters in travelling wave solutions of a damped forced Korteweg de Vries-Kuramoto Sivashinsky type equation. Discrete & Continuous Dynamical Systems - S, 2018, 11 (4) : 691-705. doi: 10.3934/dcdss.2018043

[14]

Jamel Ben Amara, Hedi Bouzidi. Exact boundary controllability for the Boussinesq equation with variable coefficients. Evolution Equations & Control Theory, 2018, 7 (3) : 403-415. doi: 10.3934/eect.2018020

[15]

José R. Quintero, Alex M. Montes. On the exact controllability and the stabilization for the Benney-Luke equation. Mathematical Control & Related Fields, 2019, 0 (0) : 0-0. doi: 10.3934/mcrf.2019039

[16]

Tatsien Li (Daqian Li). Global exact boundary controllability for first order quasilinear hyperbolic systems. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1419-1432. doi: 10.3934/dcdsb.2010.14.1419

[17]

Irena Lasiecka, Roberto Triggiani. Global exact controllability of semilinear wave equations by a double compactness/uniqueness argument. Conference Publications, 2005, 2005 (Special) : 556-565. doi: 10.3934/proc.2005.2005.556

[18]

Patrick Martinez, Judith Vancostenoble. Exact controllability in "arbitrarily short time" of the semilinear wave equation. Discrete & Continuous Dynamical Systems - A, 2003, 9 (4) : 901-924. doi: 10.3934/dcds.2003.9.901

[19]

Arnaud Heibig, Mohand Moussaoui. Exact controllability of the wave equation for domains with slits and for mixed boundary conditions. Discrete & Continuous Dynamical Systems - A, 1996, 2 (3) : 367-386. doi: 10.3934/dcds.1996.2.367

[20]

Belhassen Dehman, Jean-Pierre Raymond. Exact controllability for the Lamé system. Mathematical Control & Related Fields, 2015, 5 (4) : 743-760. doi: 10.3934/mcrf.2015.5.743

2018 Impact Factor: 1.048

Metrics

  • PDF downloads (3)
  • HTML views (21)
  • Cited by (0)

Other articles
by authors

[Back to Top]