March  2020, 9(1): 193-217. doi: 10.3934/eect.2020003

Optimality conditions for an extended tumor growth model with double obstacle potential via deep quench approach

Dipartimento di Matematica e Applicazioni, Università di Milano–Bicocca, via Cozzi 55, 20125 Milano, Italy

Received  November 2018 Revised  April 2019 Published  March 2020 Early access  August 2019

In this work, we investigate a distributed optimal control problem for an extended phase field system of Cahn–Hilliard type which physical context is that of tumor growth dynamics. In a previous contribution, the author has already studied the corresponding problem for the logarithmic potential. Here, we try to extend the analysis by taking into account a non-smooth singular nonlinearity, namely the double obstacle potential. Due to its non-smoothness behavior, the standard procedure to characterize the necessary conditions for the optimality cannot be performed. Therefore, we follow a different strategy which in the literature is known as the "deep quench" approach in order to obtain some optimality conditions that have to be interpreted in a more general framework. We establish the existence of optimal controls and some first-order optimality conditions for the system are derived by employing suitable approximation schemes.

Citation: Andrea Signori. Optimality conditions for an extended tumor growth model with double obstacle potential via deep quench approach. Evolution Equations and Control Theory, 2020, 9 (1) : 193-217. doi: 10.3934/eect.2020003
References:
[1]

A. Agosti, P. F. Antonietti, P. Ciarletta, M. Grasselli and M. Verani, A Cahn–Hilliard–type equation with application to tumor growth dynamics, Math. Methods Appl. Sci., 40 (2017), 7598–7626. Available from: https://doi.org/10.1002/mma.4548. doi: 10.1002/mma.4548.

[2]

V. Barbu, Necessary conditions for nonconvex distributed control problems governed by elliptic variational inequalities, J. Math. Anal. Appl., 80 (1981), 566–597. Available from: https://doi.org/10.1016/0022-247X(81)90125-6. doi: 10.1016/0022-247X(81)90125-6.

[3]

H. Brézis, Opérateurs Maximaux Monotones et Semi-groupes de Contractions dans les Espaces de Hilbert, North-Holland Math. Stud., North-Holland, Amsterdam, 1973.

[4]

C. Cavaterra, E. Rocca and H. Wu, Long-time dynamics and optimal control of a diffuse interface model for tumor growth, Appl. Math. Optim., (2019), 1–49. Available from: https://doi.org/10.1007/s00245-019-09562-5. doi: 10.1007/s00245-019-09562-5.

[5]

P. Colli, M. H. Farshbaf-Shaker, G. Gilardi and J. Sprekels, Optimal boundary control of a viscous Cahn Hilliard system with dynamic boundary condition and double obstacle potentials, SIAM J. Control Optim., 53 (2015), 2696–2721. Available from: https://doi.org/10.1137/140984749. doi: 10.1137/140984749.

[6]

P. Colli, M. H. Farshbaf-Shaker and J. Sprekels, A deep quench approach to the optimal control of an Allen Cahn equation with dynamic boundary conditions and double obstacles, Appl. Math. Optim., 71 (2015), 1–24. Available from: https://doi.org/10.1007/s00245-014-9250-8. doi: 10.1007/s00245-014-9250-8.

[7]

P. Colli, G. Gilardi and D. Hilhorst, On a Cahn-Hilliard type phase field system related to tumor growth, Discrete Contin. Dyn. Syst., 35 (2015), 2423–2442. Available from: https://doi.org/10.3934/dcds.2015.35.2423. doi: 10.3934/dcds.2015.35.2423.

[8]

P. Colli, G. Gilardi, E. Rocca and J. Sprekels, Vanishing viscosities and error estimate for a Cahn-Hilliard type phase field system related to tumor growth, Nonlinear Anal. Real World Appl., 26 (2015), 93–108. Available from: https://doi.org/10.1016/j.nonrwa.2015.05.002. doi: 10.1016/j.nonrwa.2015.05.002.

[9]

P. Colli, G. Gilardi, E. Rocca and J. Sprekels, Optimal distributed control of a diffuse interface model of tumor growth, Nonlinearity, 30 (2017), 2518–2546. Available from: https://doi.org/10.1088/1361-6544/aa6e5f. doi: 10.1088/1361-6544/aa6e5f.

[10]

P. Colli, G. Gilardi, E. Rocca and J. Sprekels, Asymptotic analyses and error estimates for a Cahn-Hilliard type phase field system modeling tumor growth, Discrete Contin. Dyn. Syst. Ser. S, 10 (2017), 37–54. Available from: https://doi.org/10.3934/dcdss.2017002. doi: 10.3934/dcdss.2017002.

[11]

P. Colli, G. Gilardi and J. Sprekels, Optimal velocity control of a convective Cahn-Hilliard system with double obstacles and dynamic boundary conditions: A `deep quench' approach., J. Convex Anal., 26 (2019), 485–514. Available from: http://www.heldermann.de/JCA/JCA26/JCA262/jca26024.htm.

[12]

P. Colli, G. Gilardi and J. Sprekels, Distributed optimal control of a nonstandard nonlocal phase field system with double obstacle potential, Evol. Equ. Control Theory, 6 (2017), 35–58. Available from: https://doi.org/10.3934/eect.2017003. doi: 10.3934/eect.2017003.

[13]

P. Colli and J. Sprekels, Optimal boundary control of a nonstandard Cahn-Hilliard system with dynamic boundary condition and double obstacle inclusions, in Solvability, Regularity, Optimal Control of Boundary Value Problems for PDEs, P. Colli, A. Favini, E. Rocca, G. Schimperna, J. Sprekels (ed.), Springer INdAM Series, Springer, Milan, 22, 2017,151–182. Available from: https://doi.org/10.1007/978-3-319-64489-9_7.

[14]

V. Cristini, X. R. Li, J. S. Lowengrub and S. M. Wise, Nonlinear simulations of solid tumor growth using a mixture model: Invasion and branching, J. Math. Biol., 58 (2009), 723–763. Available from: https://doi.org/10.1007/s00285-008-0215-x. doi: 10.1007/s00285-008-0215-x.

[15] V. Cristini and J. Lowengrub, Multiscale Modeling of Cancer: An Integrated Experimental and Mathematical Modeling Approach, Cambridge University Press, Leiden, 2010.  doi: 10.1017/CBO9780511781452.
[16]

M. Dai, E. Feireisl, E. Rocca, G. Schimperna and M. E. Schonbek, Analysis of a diffuse interface model of multispecies tumor growth, Nonlinearity, 30 (2017), 1639–1658. Available from: https://doi.org/10.1088/1361-6544/aa6063. doi: 10.1088/1361-6544/aa6063.

[17]

M. Ebenbeck and P. Knopf, Optimal control theory and advanced optimality conditions for a diffuse interface model of tumor growth, preprint, arXiv: 1903.00333.

[18]

M. Ebenbeck and P. Knopf, Optimal medication for tumors modeled by a Cahn-Hilliard-Brinkman equation, Calc. Var. Partial Differential Equations, 58 (2019). Available from: https://doi.org/10.1007/s00526-019-1579-z. doi: 10.1007/s00526-019-1579-z.

[19]

M. Ebenbeck and H. Garcke, Analysis of a Cahn Hilliard Brinkman model for tumour growth with chemotaxis, J. Differential Equations, 266 (2019), 5998–6036, Available from: https://doi.org/10.1016/j.jde.2018.10.045. doi: 10.1016/j.jde.2018.10.045.

[20]

S. Frigeri, M. Grasselli and E. Rocca, On a diffuse interface model of tumor growth, European J. Appl. Math., 26 (2015), 215–243. Available from: https://doi.org/10.1017/S0956792514000436.

[21]

S. Frigeri, K. F. Lam, E. Rocca and G. Schimperna, On a multi-species Cahn-Hilliard-Darcy tumor growth model with singular potentials, Comm. Math. Sci., 16 (2018), 821–856. Available from: http://dx.doi.org/10.4310/CMS.2018.v16.n3.a11. doi: 10.4310/CMS.2018.v16.n3.a11.

[22]

S. Frigeri, K. F. Lam and E. Rocca, On a diffuse interface model for tumour growth with non-local interactions and degenerate mobilities, In Solvability, Regularity, and Optimal Control of Boundary Value Problems for PDEs, P. Colli, A. Favini, E. Rocca, G. Schimperna, J. Sprekels (ed.), Springer INdAM Series, Springer, Cham, 22 (2017), 217–254. Available from: https://doi.org/10.1007/978-3-319-64489-9_9.

[23]

H. Garcke and K. F. Lam, Well-posedness of a Cahn-Hilliard system modelling tumour growth with chemotaxis and active transport, European. J. Appl. Math., 28 (2017), 284–316. Available from: https://doi.org/10.1017/S0956792516000292. doi: 10.1017/S0956792516000292.

[24]

H. Garcke and K. F. Lam, Analysis of a Cahn-Hilliard system with non-zero Dirichlet conditions modeling tumor growth with chemotaxis, Discrete Contin. Dyn. Syst., 37 (2017), 4277–4308. Available from: https://doi.org/10.3934/dcds.2017183. doi: 10.3934/dcds.2017183.

[25]

H. Garcke and K. F. Lam, Global weak solutions and asymptotic limits of a Cahn–Hilliard–Darcy system modelling tumour growth, AIMS Mathematics, 1 (2016), 318–360. Available from: https://doi.org/10.3934/Math.2016.3.318. doi: 10.3934/Math.2016.3.318.

[26]

H. Garcke and K. F. Lam, On a Cahn-Hilliard-Darcy system for tumour growth with solution dependent source terms, in Trends on Applications of Mathematics to Mechanics, E. Rocca, U. Stefanelli, L. Truskinovski, A. Visintin (ed.), Springer INdAM Series, Springer, Cham, 27 (2018), 243–264. Available from: https://doi.org/10.1007/978-3-319-75940-1_12.

[27]

H. Garcke, K. F. Lam and E. Rocca, Optimal control of treatment time in a diffuse interface model of tumor growth, Appl. Math. Optim., 78 (2018), 495–544. Available from: https://doi.org/10.1007/s00245-017-9414-4. doi: 10.1007/s00245-017-9414-4.

[28]

H. Garcke, K. F. Lam, R. Nürnberg and E. Sitka, A multiphase Cahn-Hilliard-Darcy model for tumour growth with necrosis, Math. Models Methods Appl. Sci., 28 (2018), 525–577. Available from: https://doi.org/10.1142/S0218202518500148. doi: 10.1142/S0218202518500148.

[29]

A. Hawkins-Daarud, S. Prudhomme, K. G. van der Zee and J. T. Oden, Bayesian calibration, validation, and uncertainty quantification of diffuse interface models of tumor growth, J. Math. Biol., 67 (2013), 1457–1485. Available from: https://doi.org/10.1007/s00285-012-0595-9. doi: 10.1007/s00285-012-0595-9.

[30]

A. Hawkins-Daruud, K. G. van der Zee and J. T. Oden, Numerical simulation of a thermodynamically consistent four-species tumor growth model, Int. J. Numer. Math. Biomed. Engng., 28 (2012), 3–24. Available from: https://doi.org/10.1002/cnm.1467. doi: 10.1002/cnm.1467.

[31]

D. Hilhorst, J. Kampmann, T. N. Nguyen and K. G. van der Zee, Formal asymptotic limit of a diffuse-interface tumor-growth model, Math. Models Methods Appl. Sci., 25 (2015), 1011–1043. Available from: https://doi.org/10.1142/S0218202515500268. doi: 10.1142/S0218202515500268.

[32]

J.-L. Lions, Contrôle Optimal de Systèmes Gouverneś par des Equations aux Dérivées Partielles, Dunod, Paris, 1968.

[33]

A. Miranville, The Cahn-Hilliard equation and some of its variants, AIMS Mathematics, 2 (2017), 479–544. Available from: https://doi.org/10.3934/Math.2017.2.479 doi: 10.3934/Math.2017.2.479.

[34]

A. Signori, Optimal distributed control of an extended model of tumor growth with logarithmic potential, Appl. Math. Optim., (2018), 1–33. Available from: https://doi.org/10.1007/s00245-018-9538-1. doi: 10.1007/s00245-018-9538-1.

[35]

J. Simon, Compact sets in the space $L^p(0, T; B)$, Ann. Mat. Pura Appl. (4), 146 (1986) 65–96. Available from: https://doi.org/10.1007/BF01762360.

[36]

J. Sprekels and H. Wu, Optimal Distributed Control of a Cahn-Hilliard Darcy System with Mass Sources, Appl. Math. Optim., (2019), 1–42. Available from: https://doi.org/10.1007/s00245-019-09555-4.

[37]

F. Tröltzsch, Optimal Control of Partial Differential Equations. Theory, Methods and Applications, Grad. Stud. in Math., 112, AMS, Providence, RI, 2010. doi: 10.1090/gsm/112.

[38]

X. Wu, G. J. van Zwieten and K. G. van der Zee, Stabilized second-order splitting schemes for Cahn-Hilliard models with applications to diffuse-interface tumor-growth models, Int. J. Numer. Meth. Biomed. Engng., 30 (2014), 180–203. Available from: https://doi.org/10.1002/cnm.2597. doi: 10.1002/cnm.2597.

show all references

References:
[1]

A. Agosti, P. F. Antonietti, P. Ciarletta, M. Grasselli and M. Verani, A Cahn–Hilliard–type equation with application to tumor growth dynamics, Math. Methods Appl. Sci., 40 (2017), 7598–7626. Available from: https://doi.org/10.1002/mma.4548. doi: 10.1002/mma.4548.

[2]

V. Barbu, Necessary conditions for nonconvex distributed control problems governed by elliptic variational inequalities, J. Math. Anal. Appl., 80 (1981), 566–597. Available from: https://doi.org/10.1016/0022-247X(81)90125-6. doi: 10.1016/0022-247X(81)90125-6.

[3]

H. Brézis, Opérateurs Maximaux Monotones et Semi-groupes de Contractions dans les Espaces de Hilbert, North-Holland Math. Stud., North-Holland, Amsterdam, 1973.

[4]

C. Cavaterra, E. Rocca and H. Wu, Long-time dynamics and optimal control of a diffuse interface model for tumor growth, Appl. Math. Optim., (2019), 1–49. Available from: https://doi.org/10.1007/s00245-019-09562-5. doi: 10.1007/s00245-019-09562-5.

[5]

P. Colli, M. H. Farshbaf-Shaker, G. Gilardi and J. Sprekels, Optimal boundary control of a viscous Cahn Hilliard system with dynamic boundary condition and double obstacle potentials, SIAM J. Control Optim., 53 (2015), 2696–2721. Available from: https://doi.org/10.1137/140984749. doi: 10.1137/140984749.

[6]

P. Colli, M. H. Farshbaf-Shaker and J. Sprekels, A deep quench approach to the optimal control of an Allen Cahn equation with dynamic boundary conditions and double obstacles, Appl. Math. Optim., 71 (2015), 1–24. Available from: https://doi.org/10.1007/s00245-014-9250-8. doi: 10.1007/s00245-014-9250-8.

[7]

P. Colli, G. Gilardi and D. Hilhorst, On a Cahn-Hilliard type phase field system related to tumor growth, Discrete Contin. Dyn. Syst., 35 (2015), 2423–2442. Available from: https://doi.org/10.3934/dcds.2015.35.2423. doi: 10.3934/dcds.2015.35.2423.

[8]

P. Colli, G. Gilardi, E. Rocca and J. Sprekels, Vanishing viscosities and error estimate for a Cahn-Hilliard type phase field system related to tumor growth, Nonlinear Anal. Real World Appl., 26 (2015), 93–108. Available from: https://doi.org/10.1016/j.nonrwa.2015.05.002. doi: 10.1016/j.nonrwa.2015.05.002.

[9]

P. Colli, G. Gilardi, E. Rocca and J. Sprekels, Optimal distributed control of a diffuse interface model of tumor growth, Nonlinearity, 30 (2017), 2518–2546. Available from: https://doi.org/10.1088/1361-6544/aa6e5f. doi: 10.1088/1361-6544/aa6e5f.

[10]

P. Colli, G. Gilardi, E. Rocca and J. Sprekels, Asymptotic analyses and error estimates for a Cahn-Hilliard type phase field system modeling tumor growth, Discrete Contin. Dyn. Syst. Ser. S, 10 (2017), 37–54. Available from: https://doi.org/10.3934/dcdss.2017002. doi: 10.3934/dcdss.2017002.

[11]

P. Colli, G. Gilardi and J. Sprekels, Optimal velocity control of a convective Cahn-Hilliard system with double obstacles and dynamic boundary conditions: A `deep quench' approach., J. Convex Anal., 26 (2019), 485–514. Available from: http://www.heldermann.de/JCA/JCA26/JCA262/jca26024.htm.

[12]

P. Colli, G. Gilardi and J. Sprekels, Distributed optimal control of a nonstandard nonlocal phase field system with double obstacle potential, Evol. Equ. Control Theory, 6 (2017), 35–58. Available from: https://doi.org/10.3934/eect.2017003. doi: 10.3934/eect.2017003.

[13]

P. Colli and J. Sprekels, Optimal boundary control of a nonstandard Cahn-Hilliard system with dynamic boundary condition and double obstacle inclusions, in Solvability, Regularity, Optimal Control of Boundary Value Problems for PDEs, P. Colli, A. Favini, E. Rocca, G. Schimperna, J. Sprekels (ed.), Springer INdAM Series, Springer, Milan, 22, 2017,151–182. Available from: https://doi.org/10.1007/978-3-319-64489-9_7.

[14]

V. Cristini, X. R. Li, J. S. Lowengrub and S. M. Wise, Nonlinear simulations of solid tumor growth using a mixture model: Invasion and branching, J. Math. Biol., 58 (2009), 723–763. Available from: https://doi.org/10.1007/s00285-008-0215-x. doi: 10.1007/s00285-008-0215-x.

[15] V. Cristini and J. Lowengrub, Multiscale Modeling of Cancer: An Integrated Experimental and Mathematical Modeling Approach, Cambridge University Press, Leiden, 2010.  doi: 10.1017/CBO9780511781452.
[16]

M. Dai, E. Feireisl, E. Rocca, G. Schimperna and M. E. Schonbek, Analysis of a diffuse interface model of multispecies tumor growth, Nonlinearity, 30 (2017), 1639–1658. Available from: https://doi.org/10.1088/1361-6544/aa6063. doi: 10.1088/1361-6544/aa6063.

[17]

M. Ebenbeck and P. Knopf, Optimal control theory and advanced optimality conditions for a diffuse interface model of tumor growth, preprint, arXiv: 1903.00333.

[18]

M. Ebenbeck and P. Knopf, Optimal medication for tumors modeled by a Cahn-Hilliard-Brinkman equation, Calc. Var. Partial Differential Equations, 58 (2019). Available from: https://doi.org/10.1007/s00526-019-1579-z. doi: 10.1007/s00526-019-1579-z.

[19]

M. Ebenbeck and H. Garcke, Analysis of a Cahn Hilliard Brinkman model for tumour growth with chemotaxis, J. Differential Equations, 266 (2019), 5998–6036, Available from: https://doi.org/10.1016/j.jde.2018.10.045. doi: 10.1016/j.jde.2018.10.045.

[20]

S. Frigeri, M. Grasselli and E. Rocca, On a diffuse interface model of tumor growth, European J. Appl. Math., 26 (2015), 215–243. Available from: https://doi.org/10.1017/S0956792514000436.

[21]

S. Frigeri, K. F. Lam, E. Rocca and G. Schimperna, On a multi-species Cahn-Hilliard-Darcy tumor growth model with singular potentials, Comm. Math. Sci., 16 (2018), 821–856. Available from: http://dx.doi.org/10.4310/CMS.2018.v16.n3.a11. doi: 10.4310/CMS.2018.v16.n3.a11.

[22]

S. Frigeri, K. F. Lam and E. Rocca, On a diffuse interface model for tumour growth with non-local interactions and degenerate mobilities, In Solvability, Regularity, and Optimal Control of Boundary Value Problems for PDEs, P. Colli, A. Favini, E. Rocca, G. Schimperna, J. Sprekels (ed.), Springer INdAM Series, Springer, Cham, 22 (2017), 217–254. Available from: https://doi.org/10.1007/978-3-319-64489-9_9.

[23]

H. Garcke and K. F. Lam, Well-posedness of a Cahn-Hilliard system modelling tumour growth with chemotaxis and active transport, European. J. Appl. Math., 28 (2017), 284–316. Available from: https://doi.org/10.1017/S0956792516000292. doi: 10.1017/S0956792516000292.

[24]

H. Garcke and K. F. Lam, Analysis of a Cahn-Hilliard system with non-zero Dirichlet conditions modeling tumor growth with chemotaxis, Discrete Contin. Dyn. Syst., 37 (2017), 4277–4308. Available from: https://doi.org/10.3934/dcds.2017183. doi: 10.3934/dcds.2017183.

[25]

H. Garcke and K. F. Lam, Global weak solutions and asymptotic limits of a Cahn–Hilliard–Darcy system modelling tumour growth, AIMS Mathematics, 1 (2016), 318–360. Available from: https://doi.org/10.3934/Math.2016.3.318. doi: 10.3934/Math.2016.3.318.

[26]

H. Garcke and K. F. Lam, On a Cahn-Hilliard-Darcy system for tumour growth with solution dependent source terms, in Trends on Applications of Mathematics to Mechanics, E. Rocca, U. Stefanelli, L. Truskinovski, A. Visintin (ed.), Springer INdAM Series, Springer, Cham, 27 (2018), 243–264. Available from: https://doi.org/10.1007/978-3-319-75940-1_12.

[27]

H. Garcke, K. F. Lam and E. Rocca, Optimal control of treatment time in a diffuse interface model of tumor growth, Appl. Math. Optim., 78 (2018), 495–544. Available from: https://doi.org/10.1007/s00245-017-9414-4. doi: 10.1007/s00245-017-9414-4.

[28]

H. Garcke, K. F. Lam, R. Nürnberg and E. Sitka, A multiphase Cahn-Hilliard-Darcy model for tumour growth with necrosis, Math. Models Methods Appl. Sci., 28 (2018), 525–577. Available from: https://doi.org/10.1142/S0218202518500148. doi: 10.1142/S0218202518500148.

[29]

A. Hawkins-Daarud, S. Prudhomme, K. G. van der Zee and J. T. Oden, Bayesian calibration, validation, and uncertainty quantification of diffuse interface models of tumor growth, J. Math. Biol., 67 (2013), 1457–1485. Available from: https://doi.org/10.1007/s00285-012-0595-9. doi: 10.1007/s00285-012-0595-9.

[30]

A. Hawkins-Daruud, K. G. van der Zee and J. T. Oden, Numerical simulation of a thermodynamically consistent four-species tumor growth model, Int. J. Numer. Math. Biomed. Engng., 28 (2012), 3–24. Available from: https://doi.org/10.1002/cnm.1467. doi: 10.1002/cnm.1467.

[31]

D. Hilhorst, J. Kampmann, T. N. Nguyen and K. G. van der Zee, Formal asymptotic limit of a diffuse-interface tumor-growth model, Math. Models Methods Appl. Sci., 25 (2015), 1011–1043. Available from: https://doi.org/10.1142/S0218202515500268. doi: 10.1142/S0218202515500268.

[32]

J.-L. Lions, Contrôle Optimal de Systèmes Gouverneś par des Equations aux Dérivées Partielles, Dunod, Paris, 1968.

[33]

A. Miranville, The Cahn-Hilliard equation and some of its variants, AIMS Mathematics, 2 (2017), 479–544. Available from: https://doi.org/10.3934/Math.2017.2.479 doi: 10.3934/Math.2017.2.479.

[34]

A. Signori, Optimal distributed control of an extended model of tumor growth with logarithmic potential, Appl. Math. Optim., (2018), 1–33. Available from: https://doi.org/10.1007/s00245-018-9538-1. doi: 10.1007/s00245-018-9538-1.

[35]

J. Simon, Compact sets in the space $L^p(0, T; B)$, Ann. Mat. Pura Appl. (4), 146 (1986) 65–96. Available from: https://doi.org/10.1007/BF01762360.

[36]

J. Sprekels and H. Wu, Optimal Distributed Control of a Cahn-Hilliard Darcy System with Mass Sources, Appl. Math. Optim., (2019), 1–42. Available from: https://doi.org/10.1007/s00245-019-09555-4.

[37]

F. Tröltzsch, Optimal Control of Partial Differential Equations. Theory, Methods and Applications, Grad. Stud. in Math., 112, AMS, Providence, RI, 2010. doi: 10.1090/gsm/112.

[38]

X. Wu, G. J. van Zwieten and K. G. van der Zee, Stabilized second-order splitting schemes for Cahn-Hilliard models with applications to diffuse-interface tumor-growth models, Int. J. Numer. Meth. Biomed. Engng., 30 (2014), 180–203. Available from: https://doi.org/10.1002/cnm.2597. doi: 10.1002/cnm.2597.

[1]

Pierluigi Colli, Gianni Gilardi, Elisabetta Rocca, Jürgen Sprekels. Asymptotic analyses and error estimates for a Cahn-Hilliard type phase field system modelling tumor growth. Discrete and Continuous Dynamical Systems - S, 2017, 10 (1) : 37-54. doi: 10.3934/dcdss.2017002

[2]

Andrea Signori. Optimal treatment for a phase field system of Cahn-Hilliard type modeling tumor growth by asymptotic scheme. Mathematical Control and Related Fields, 2020, 10 (2) : 305-331. doi: 10.3934/mcrf.2019040

[3]

Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete and Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213

[4]

Pierluigi Colli, Gianni Gilardi, Danielle Hilhorst. On a Cahn-Hilliard type phase field system related to tumor growth. Discrete and Continuous Dynamical Systems, 2015, 35 (6) : 2423-2442. doi: 10.3934/dcds.2015.35.2423

[5]

Bosheng Chen, Huilai Li, Changchun Liu. Optimal distributed control for a coupled phase-field system. Discrete and Continuous Dynamical Systems - B, 2022, 27 (3) : 1789-1825. doi: 10.3934/dcdsb.2021110

[6]

Sofia O. Lopes, Fernando A. C. C. Fontes, Maria do Rosário de Pinho. On constraint qualifications for nondegenerate necessary conditions of optimality applied to optimal control problems. Discrete and Continuous Dynamical Systems, 2011, 29 (2) : 559-575. doi: 10.3934/dcds.2011.29.559

[7]

Jianxiong Ye, An Li. Necessary optimality conditions for nonautonomous optimal control problems and its applications to bilevel optimal control. Journal of Industrial and Management Optimization, 2019, 15 (3) : 1399-1419. doi: 10.3934/jimo.2018101

[8]

Andrea Signori. Penalisation of long treatment time and optimal control of a tumour growth model of Cahn–Hilliard type with singular potential. Discrete and Continuous Dynamical Systems, 2021, 41 (6) : 2519-2542. doi: 10.3934/dcds.2020373

[9]

Hawraa Alsayed, Hussein Fakih, Alain Miranville, Ali Wehbe. Optimal control of an Allen-Cahn model for tumor growth through supply of cytotoxic drugs. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022003

[10]

Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Distributed optimal control of a nonstandard nonlocal phase field system with double obstacle potential. Evolution Equations and Control Theory, 2017, 6 (1) : 35-58. doi: 10.3934/eect.2017003

[11]

Francis Clarke. A general theorem on necessary conditions in optimal control. Discrete and Continuous Dynamical Systems, 2011, 29 (2) : 485-503. doi: 10.3934/dcds.2011.29.485

[12]

Pierluigi Colli, Gianni Gilardi, Gabriela Marinoschi, Elisabetta Rocca. Optimal control for a phase field system with a possibly singular potential. Mathematical Control and Related Fields, 2016, 6 (1) : 95-112. doi: 10.3934/mcrf.2016.6.95

[13]

Pierluigi Colli, Gianni Gilardi, Gabriela Marinoschi, Elisabetta Rocca. Optimal control for a conserved phase field system with a possibly singular potential. Evolution Equations and Control Theory, 2018, 7 (1) : 95-116. doi: 10.3934/eect.2018006

[14]

Pierluigi Colli, Gianni Gilardi, Elisabetta Rocca, Jürgen Sprekels. Well-posedness and optimal control for a Cahn–Hilliard–Oono system with control in the mass term. Discrete and Continuous Dynamical Systems - S, 2022, 15 (8) : 2135-2172. doi: 10.3934/dcdss.2022001

[15]

Shahlar F. Maharramov. Necessary optimality conditions for switching control problems. Journal of Industrial and Management Optimization, 2010, 6 (1) : 47-55. doi: 10.3934/jimo.2010.6.47

[16]

Vincenzo Basco, Piermarco Cannarsa, Hélène Frankowska. Necessary conditions for infinite horizon optimal control problems with state constraints. Mathematical Control and Related Fields, 2018, 8 (3&4) : 535-555. doi: 10.3934/mcrf.2018022

[17]

Harald Garcke, Kei Fong Lam. Analysis of a Cahn--Hilliard system with non-zero Dirichlet conditions modeling tumor growth with chemotaxis. Discrete and Continuous Dynamical Systems, 2017, 37 (8) : 4277-4308. doi: 10.3934/dcds.2017183

[18]

Ciro D'Apice, Olha P. Kupenko, Rosanna Manzo. On boundary optimal control problem for an arterial system: First-order optimality conditions. Networks and Heterogeneous Media, 2018, 13 (4) : 585-607. doi: 10.3934/nhm.2018027

[19]

Thierry Horsin, Peter I. Kogut, Olivier Wilk. Optimal $L^2$-control problem in coefficients for a linear elliptic equation. II. Approximation of solutions and optimality conditions. Mathematical Control and Related Fields, 2016, 6 (4) : 595-628. doi: 10.3934/mcrf.2016017

[20]

Lucas Bonifacius, Ira Neitzel. Second order optimality conditions for optimal control of quasilinear parabolic equations. Mathematical Control and Related Fields, 2018, 8 (1) : 1-34. doi: 10.3934/mcrf.2018001

2020 Impact Factor: 1.081

Metrics

  • PDF downloads (240)
  • HTML views (305)
  • Cited by (7)

Other articles
by authors

[Back to Top]