• Previous Article
    The Kalman condition for the boundary controllability of coupled 1-d wave equations
  • EECT Home
  • This Issue
  • Next Article
    Optimality conditions for an extended tumor growth model with double obstacle potential via deep quench approach
March  2020, 9(1): 219-254. doi: 10.3934/eect.2020004

Multi-valued perturbation to evolution problems involving time dependent maximal monotone operators

1. 

Laboratoire LAOTI, FSEI, Université Mohammed Seddik Benyahia de Jijel, Algérie

2. 

IMAG, Université Montpellier, CNRS, Montpellier Cedex 5, France

3. 

CMAFcIO, Departamento de Matemática, Faculdade de Ciências da Universidade de Lisboa, Portugal

* Corresponding author: Dalila Azzam-Laouir

Received  December 2018 Revised  May 2019 Published  March 2020 Early access  August 2019

In this paper, we study the existence of solutions for evolution problems of the form $ -\frac{du}{dr}(t) \in A(t)u(t) + F(t, u(t))+f(t, u(t)) $, where, for each $ t $, $ A(t) : D(A(t)) \to 2 ^H $ is a maximal monotone operator in a Hilbert space $ H $ with continuous, Lipschitz or absolutely continuous variation in time. The perturbation $ f $ is separately integrable on $ [0, T] $ and separately Lipschitz on $ H $, while $ F $ is scalarly measurable and separately scalarly upper semicontinuous on $ H $, with convex and weakly compact values. Several new applications are provided.

Citation: Dalila Azzam-Laouir, Warda Belhoula, Charles Castaing, M. D. P. Monteiro Marques. Multi-valued perturbation to evolution problems involving time dependent maximal monotone operators. Evolution Equations and Control Theory, 2020, 9 (1) : 219-254. doi: 10.3934/eect.2020004
References:
[1]

S. AdlyT. Haddad and L. Thibault, Convex sweeping process in the framework of measure differential inclusions and evolution variational inequalities, Math. Program, 148 (2014), 5-47.  doi: 10.1007/s10107-014-0754-4.

[2]

H. AttouchA. Cabot and M.-O. Czarnecki, Asymptotic behavior of nonautonomous monotone and subgradient evolution equations, Trans. Amer. Math. Soc., 370 (2018), 755-790.  doi: 10.1090/tran/6965.

[3]

H. Attouch and A. Damlamian, Strong solutions for parabolic variational inequalities, Nonlinear Anal., 2 (1978), 329-353.  doi: 10.1016/0362-546X(78)90021-4.

[4]

D. Azzam-Laouir, W. Belhoula, C. Castaing and M. D. P. Monteiro Marques, Perturbed evolution problems with absolutely continuous variation in time and applications, J. Fixed Point Ttheory Appl., 21 (2019), Art. 40, 32 pp. https://doi.org/10.1007/s11784-019-0666-2. doi: 10.1007/s11784-019-0666-2.

[5]

D. Azzam-LaouirC. Castaing and M. D. P. Monteiro Marques, Perturbed evolution problems with continuous bounded variation in time and applications, Set-Valued Var. Anal., 26 (2018), 693-728.  doi: 10.1007/s11228-017-0432-9.

[6]

D. Azzam-LaouirS. Izza and L. Thibault, Mixed semicontinuous perturbation of nonconvex state-dependent sweeping process, Set Valued Var. Anal., 22 (2014), 271-283.  doi: 10.1007/s11228-013-0248-1.

[7]

D. Azzam-LaouirA. Makhlouf and L. Thibault, On perturbed sweeping process, Appl. Analysis, 95 (2016), 303-322.  doi: 10.1080/00036811.2014.1002482.

[8]

V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, Noordhoff Int. Publ. Leyden, 1976,352 pp.

[9]

V. Barbu, Nonlinear Differential Equations of Monotone Types in Banach Spaces, Springer, 2010. doi: 10.1007/978-1-4419-5542-5.

[10]

H. Benabdellah and A. Faik, Perturbations convexes et non convexes des équations d'évolution, Port. Math., 53 (1996), 187-208. 

[11]

H. Brézis, Opérateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert, North Holland, 1973.

[12]

B. Brogliato, Nonsmooth Mechanics: Models, Dynamics and Control, Springer, 3rd edition, 2016. doi: 10.1007/978-3-319-28664-8.

[13]

C. CastaingT. X. Dúc Ha and M. Valadier, Evolution equations governed by the sweeping process, Set-Valued Anal., 1 (1993), 109-139.  doi: 10.1007/BF01027688.

[14]

C. Castaing and M. D. P. Monteiro Marques, Evolution problems associated with nonconvex closed moving sets with bounded variation, Portugal. Math., 53 (1996), 73-87. 

[15]

C. CastaingM. D. P. Monteiro Marques and P. Raynaud de Fitte, A Skorohod problem governed by a closed convex moving set, Journal of Convex Analysis, 23 (2016), 387-423. 

[16]

C. CastaingM. D. P. Monteiro Marques and P. Raynaud de Fitte, Second-order evolution problems with time-dependent maximal monotone operator and applications, Adv. Math. Econ., 22 (2018), 25-77. 

[17]

C. Castaing, P. Raynaud de Fitte and M. Valadier, Young Measures on Topological Spaces with Applications in Control Theory and Probability Theory, Kluwer Academic Publishers, Dordrecht, 2004. doi: 10.1007/1-4020-1964-5.

[18]

C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, Lecture Notes in Mathematics, vol. 580. Springer-Verlag, Berlin, 1977.

[19]

B. Cornet, Contributions à la Théorie Mathématique des Mécanismes Dynamiques D'allocation des Ressources Thèse, Université de Paris IX, 1981.

[20]

J. Cortes, Discontinuous dynamical systems: A tutorial on solutions, nonsmooth analysis, and stability, Control Systems Magazine, 28 (2008), 36-73.  doi: 10.1109/MCS.2008.919306.

[21]

J. F. Edmond and L. Thibault, Relaxation of an optimal control problem involving a perturbed sweeping process, Math. Program, Ser. B, 104 (2005), 347–373. doi: 10.1007/s10107-005-0619-y.

[22]

J. F. Edmond and L. Thibault, BV solutions of nonconvex sweeping process differential inclusion with perturbation, J. Differential Equations, 226 (2006), 135-179.  doi: 10.1016/j.jde.2005.12.005.

[23]

A. Haraux, Nonlinear Evolution Equations-Global Behavior of Solutions, Lecture Notes in Mathematics, 841. Springer-Verlag, 1981.

[24]

M. Kunze and M. D. P. Monteiro Marques, BV solutions to evolution problems with time-dependent domains, Set-Valued Anal., 5 (1997), 57-72.  doi: 10.1023/A:1008621327851.

[25]

M. D. P. Monteiro Marques, Perturbations convexes semi-continues supérieurement de problèmes d'évolution dans les espaces de Hilbert, Séminaire d'Analyse Convexe, Montpellier, 14 (1984), 23 pp.

[26]

M. D. P. Monteiro Marques, Differential Inclusions in Nonsmooth Mechanical Problems, Shocks and Dry Friction, Birkhäuser, Basel, 1993. doi: 10.1007/978-3-0348-7614-8.

[27]

J.-J. Moreau, Evolution problem associated with a moving convex set in a Hilbert space, J. Differential Equations, 26 (1977), 347-374.  doi: 10.1016/0022-0396(77)90085-7.

[28]

F. Nacry, Perturbed BV sweeping process involving prox-regular sets, Journal of Nonlinear and Convex Analysis, 18 (2017), 1619-1651. 

[29]

J.-S. Pang and D. E. Stewart, Differential variational inequalities, Math. Prog., Ser. A, 113 (2008), 345–424. doi: 10.1007/s10107-006-0052-x.

[30]

A. TanwaniB. Brogliato and C. Prieur, Well-posedness and output regulation for implicit time-varying evolution variational inequalities, SIAM J. Control Optim., 56 (2018), 751-781.  doi: 10.1137/16M1083657.

[31]

L. Thibault, Propriétés des Sous-Différentiels de Fonctions Localement Lipschitziennes définies sur un espace de Banach séparable. Applications, Thèse, Université Montpellier Ⅱ, 1976, 32 pp.

[32]

M. Valadier, Quelques résultats de base concernant le processus de la rafle, Sém. Anal. Convexe, Montpellier, 3 (1988), 30 pp.

[33]

A. A. Vladimirov, Nonstationary dissipative evolution equation in Hilbert space, Nonlinear Anal., 17 (1991), 499-518.  doi: 10.1016/0362-546X(91)90061-5.

[34]

I. I. Vrabie, Compactness Methods for Nonlinear Evolution, Pitman Monographs and Surveys in Pure and Applied Mathematics, 32. Longman Scientific & Technical, Harlow; John Wiley & Sons, Inc., New York, 1987.

show all references

References:
[1]

S. AdlyT. Haddad and L. Thibault, Convex sweeping process in the framework of measure differential inclusions and evolution variational inequalities, Math. Program, 148 (2014), 5-47.  doi: 10.1007/s10107-014-0754-4.

[2]

H. AttouchA. Cabot and M.-O. Czarnecki, Asymptotic behavior of nonautonomous monotone and subgradient evolution equations, Trans. Amer. Math. Soc., 370 (2018), 755-790.  doi: 10.1090/tran/6965.

[3]

H. Attouch and A. Damlamian, Strong solutions for parabolic variational inequalities, Nonlinear Anal., 2 (1978), 329-353.  doi: 10.1016/0362-546X(78)90021-4.

[4]

D. Azzam-Laouir, W. Belhoula, C. Castaing and M. D. P. Monteiro Marques, Perturbed evolution problems with absolutely continuous variation in time and applications, J. Fixed Point Ttheory Appl., 21 (2019), Art. 40, 32 pp. https://doi.org/10.1007/s11784-019-0666-2. doi: 10.1007/s11784-019-0666-2.

[5]

D. Azzam-LaouirC. Castaing and M. D. P. Monteiro Marques, Perturbed evolution problems with continuous bounded variation in time and applications, Set-Valued Var. Anal., 26 (2018), 693-728.  doi: 10.1007/s11228-017-0432-9.

[6]

D. Azzam-LaouirS. Izza and L. Thibault, Mixed semicontinuous perturbation of nonconvex state-dependent sweeping process, Set Valued Var. Anal., 22 (2014), 271-283.  doi: 10.1007/s11228-013-0248-1.

[7]

D. Azzam-LaouirA. Makhlouf and L. Thibault, On perturbed sweeping process, Appl. Analysis, 95 (2016), 303-322.  doi: 10.1080/00036811.2014.1002482.

[8]

V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, Noordhoff Int. Publ. Leyden, 1976,352 pp.

[9]

V. Barbu, Nonlinear Differential Equations of Monotone Types in Banach Spaces, Springer, 2010. doi: 10.1007/978-1-4419-5542-5.

[10]

H. Benabdellah and A. Faik, Perturbations convexes et non convexes des équations d'évolution, Port. Math., 53 (1996), 187-208. 

[11]

H. Brézis, Opérateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert, North Holland, 1973.

[12]

B. Brogliato, Nonsmooth Mechanics: Models, Dynamics and Control, Springer, 3rd edition, 2016. doi: 10.1007/978-3-319-28664-8.

[13]

C. CastaingT. X. Dúc Ha and M. Valadier, Evolution equations governed by the sweeping process, Set-Valued Anal., 1 (1993), 109-139.  doi: 10.1007/BF01027688.

[14]

C. Castaing and M. D. P. Monteiro Marques, Evolution problems associated with nonconvex closed moving sets with bounded variation, Portugal. Math., 53 (1996), 73-87. 

[15]

C. CastaingM. D. P. Monteiro Marques and P. Raynaud de Fitte, A Skorohod problem governed by a closed convex moving set, Journal of Convex Analysis, 23 (2016), 387-423. 

[16]

C. CastaingM. D. P. Monteiro Marques and P. Raynaud de Fitte, Second-order evolution problems with time-dependent maximal monotone operator and applications, Adv. Math. Econ., 22 (2018), 25-77. 

[17]

C. Castaing, P. Raynaud de Fitte and M. Valadier, Young Measures on Topological Spaces with Applications in Control Theory and Probability Theory, Kluwer Academic Publishers, Dordrecht, 2004. doi: 10.1007/1-4020-1964-5.

[18]

C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, Lecture Notes in Mathematics, vol. 580. Springer-Verlag, Berlin, 1977.

[19]

B. Cornet, Contributions à la Théorie Mathématique des Mécanismes Dynamiques D'allocation des Ressources Thèse, Université de Paris IX, 1981.

[20]

J. Cortes, Discontinuous dynamical systems: A tutorial on solutions, nonsmooth analysis, and stability, Control Systems Magazine, 28 (2008), 36-73.  doi: 10.1109/MCS.2008.919306.

[21]

J. F. Edmond and L. Thibault, Relaxation of an optimal control problem involving a perturbed sweeping process, Math. Program, Ser. B, 104 (2005), 347–373. doi: 10.1007/s10107-005-0619-y.

[22]

J. F. Edmond and L. Thibault, BV solutions of nonconvex sweeping process differential inclusion with perturbation, J. Differential Equations, 226 (2006), 135-179.  doi: 10.1016/j.jde.2005.12.005.

[23]

A. Haraux, Nonlinear Evolution Equations-Global Behavior of Solutions, Lecture Notes in Mathematics, 841. Springer-Verlag, 1981.

[24]

M. Kunze and M. D. P. Monteiro Marques, BV solutions to evolution problems with time-dependent domains, Set-Valued Anal., 5 (1997), 57-72.  doi: 10.1023/A:1008621327851.

[25]

M. D. P. Monteiro Marques, Perturbations convexes semi-continues supérieurement de problèmes d'évolution dans les espaces de Hilbert, Séminaire d'Analyse Convexe, Montpellier, 14 (1984), 23 pp.

[26]

M. D. P. Monteiro Marques, Differential Inclusions in Nonsmooth Mechanical Problems, Shocks and Dry Friction, Birkhäuser, Basel, 1993. doi: 10.1007/978-3-0348-7614-8.

[27]

J.-J. Moreau, Evolution problem associated with a moving convex set in a Hilbert space, J. Differential Equations, 26 (1977), 347-374.  doi: 10.1016/0022-0396(77)90085-7.

[28]

F. Nacry, Perturbed BV sweeping process involving prox-regular sets, Journal of Nonlinear and Convex Analysis, 18 (2017), 1619-1651. 

[29]

J.-S. Pang and D. E. Stewart, Differential variational inequalities, Math. Prog., Ser. A, 113 (2008), 345–424. doi: 10.1007/s10107-006-0052-x.

[30]

A. TanwaniB. Brogliato and C. Prieur, Well-posedness and output regulation for implicit time-varying evolution variational inequalities, SIAM J. Control Optim., 56 (2018), 751-781.  doi: 10.1137/16M1083657.

[31]

L. Thibault, Propriétés des Sous-Différentiels de Fonctions Localement Lipschitziennes définies sur un espace de Banach séparable. Applications, Thèse, Université Montpellier Ⅱ, 1976, 32 pp.

[32]

M. Valadier, Quelques résultats de base concernant le processus de la rafle, Sém. Anal. Convexe, Montpellier, 3 (1988), 30 pp.

[33]

A. A. Vladimirov, Nonstationary dissipative evolution equation in Hilbert space, Nonlinear Anal., 17 (1991), 499-518.  doi: 10.1016/0362-546X(91)90061-5.

[34]

I. I. Vrabie, Compactness Methods for Nonlinear Evolution, Pitman Monographs and Surveys in Pure and Applied Mathematics, 32. Longman Scientific & Technical, Harlow; John Wiley & Sons, Inc., New York, 1987.

[1]

Gang Cai, Yekini Shehu, Olaniyi S. Iyiola. Inertial Tseng's extragradient method for solving variational inequality problems of pseudo-monotone and non-Lipschitz operators. Journal of Industrial and Management Optimization, 2022, 18 (4) : 2873-2902. doi: 10.3934/jimo.2021095

[2]

Sébastien Gouëzel. An interval map with a spectral gap on Lipschitz functions, but not on bounded variation functions. Discrete and Continuous Dynamical Systems, 2009, 24 (4) : 1205-1208. doi: 10.3934/dcds.2009.24.1205

[3]

A. C. Eberhard, J-P. Crouzeix. Existence of closed graph, maximal, cyclic pseudo-monotone relations and revealed preference theory. Journal of Industrial and Management Optimization, 2007, 3 (2) : 233-255. doi: 10.3934/jimo.2007.3.233

[4]

Adrian Tudorascu. On absolutely continuous curves of probabilities on the line. Discrete and Continuous Dynamical Systems, 2019, 39 (9) : 5105-5124. doi: 10.3934/dcds.2019207

[5]

Soumia Saïdi. On a second-order functional evolution problem with time and state dependent maximal monotone operators. Evolution Equations and Control Theory, 2022, 11 (4) : 1001-1035. doi: 10.3934/eect.2021034

[6]

JIAO CHEN, WEI DAI, GUOZHEN LU. $L^p$ boundedness for maximal functions associated with multi-linear pseudo-differential operators. Communications on Pure and Applied Analysis, 2017, 16 (3) : 883-898. doi: 10.3934/cpaa.2017042

[7]

Mohamed Sami ElBialy. Locally Lipschitz perturbations of bisemigroups. Communications on Pure and Applied Analysis, 2010, 9 (2) : 327-349. doi: 10.3934/cpaa.2010.9.327

[8]

Alfonso Artigue. Lipschitz perturbations of expansive systems. Discrete and Continuous Dynamical Systems, 2015, 35 (5) : 1829-1841. doi: 10.3934/dcds.2015.35.1829

[9]

Lucia D. Simonelli. Absolutely continuous spectrum for parabolic flows/maps. Discrete and Continuous Dynamical Systems, 2018, 38 (1) : 263-292. doi: 10.3934/dcds.2018013

[10]

Harun Karsli, Purshottam Narain Agrawal. Rate of convergence of Stancu type modified $ q $-Gamma operators for functions with derivatives of bounded variation. Mathematical Foundations of Computing, 2022  doi: 10.3934/mfc.2022002

[11]

Noriaki Kawaguchi. Maximal chain continuous factor. Discrete and Continuous Dynamical Systems, 2021, 41 (12) : 5915-5942. doi: 10.3934/dcds.2021101

[12]

Ildoo Kim. An $L_p$-Lipschitz theory for parabolic equations with time measurable pseudo-differential operators. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2751-2771. doi: 10.3934/cpaa.2018130

[13]

Shaotao Hu, Yuanheng Wang, Bing Tan, Fenghui Wang. Inertial iterative method for solving variational inequality problems of pseudo-monotone operators and fixed point problems of nonexpansive mappings in Hilbert spaces. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022060

[14]

Dag Lukkassen, Annette Meidell, Peter Wall. Multiscale homogenization of monotone operators. Discrete and Continuous Dynamical Systems, 2008, 22 (3) : 711-727. doi: 10.3934/dcds.2008.22.711

[15]

Augusto VisintiN. On the variational representation of monotone operators. Discrete and Continuous Dynamical Systems - S, 2017, 10 (4) : 909-918. doi: 10.3934/dcdss.2017046

[16]

Jeremy LeCrone, Gieri Simonett. Continuous maximal regularity and analytic semigroups. Conference Publications, 2011, 2011 (Special) : 963-970. doi: 10.3934/proc.2011.2011.963

[17]

Simon Lloyd, Edson Vargas. Critical covering maps without absolutely continuous invariant probability measure. Discrete and Continuous Dynamical Systems, 2019, 39 (5) : 2393-2412. doi: 10.3934/dcds.2019101

[18]

Dariusz Skrenty. Absolutely continuous spectrum of some group extensions of Gaussian actions. Discrete and Continuous Dynamical Systems, 2010, 26 (1) : 365-378. doi: 10.3934/dcds.2010.26.365

[19]

Fanni M. Sélley. A self-consistent dynamical system with multiple absolutely continuous invariant measures. Journal of Computational Dynamics, 2021, 8 (1) : 9-32. doi: 10.3934/jcd.2021002

[20]

Luca Lussardi, Stefano Marini, Marco Veneroni. Stochastic homogenization of maximal monotone relations and applications. Networks and Heterogeneous Media, 2018, 13 (1) : 27-45. doi: 10.3934/nhm.2018002

2021 Impact Factor: 1.169

Metrics

  • PDF downloads (462)
  • HTML views (340)
  • Cited by (6)

[Back to Top]