\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Stability analysis in some strongly prestressed rectangular plates

Abstract / Introduction Full Text(HTML) Figure(8) Related Papers Cited by
  • We consider an evolution plate equation aiming to model the motion of the deck of a periodically forced strongly prestressed suspension bridge. Using the prestress assumption, we show the appearance of multiple time-periodic uni-modal longitudinal solutions and we discuss their stability. Then, we investigate how these solutions exchange energy with a torsional mode. Although the problem is forced, we find a portrait where stability and instability regions alternate. The techniques used rely on ODE analysis of stability and are complemented with numerical simulations.

    Mathematics Subject Classification: 34C25, 35B35.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  The Deer Isle Bridge: with permission of Thaddeus Roan

    Figure 2.  The choice of the lower and upper solutions in the proof of the bounds and of the stability properties of $ \wp^1 $ (left) and $ \wp^2, \wp^3 $ (right)

    Figure 3.  The components $ U(t) $ (left) and $ V(t) $ (right) in (42), with (46) and $ U_0 = 0.2 $, $ V_0 = 0.01 $

    Figure 4.  The components $ U(t) $ (left) and $ V(t) $ (right) in (42), with (46) and $ U_0 = 0.2 $, $ V_0 = 2 $

    Figure 5.  The components $ U(t) $ (left) and $ V(t) $ (right) in (42), with (46) and $ U_0 = 0.2 $, $ V_0 = 10 $

    Figure 6.  The $ V $-component of the solution of (44) for values of the parameters given by (48)

    Figure 7.  The $ V $-component of the solution of (44) for values of the parameters given by (49)

    Figure 8.  The $ V $-component of the solution of (44) for values of the parameters given by (50)

  • [1] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards Applied Mathematics Series 55, Washington, D. C., 1964.
    [2] O. H. Ammann, T. von Kármán and G. B. Woodruff, The Failure of the Tacoma Narrows Bridge, Technical Report, Federal Works Agency. Washington, D. C., 1941.
    [3] U. BattistiE. BerchioA. Ferrero and F. Gazzola, Energy transfer between modes in a nonlinear beam equation, J. Math. Pures Appl., 108 (2017), 885-917.  doi: 10.1016/j.matpur.2017.05.010.
    [4] E. BerchioA. Ferrero and F. Gazzola, Structural instability of nonlinear plates modelling suspension bridges: Mathematical answers to some long-standing questions, Nonlinear Analysis Real World Applications, 28 (2016), 91-125.  doi: 10.1016/j.nonrwa.2015.09.005.
    [5] H. M. Berger, A new approach to the analysis of large deflections of plates, J. Appl. Mech., 22 (1955), 465-472. 
    [6] K. Y. Billah and R. H. Scanlan, Resonance, Tacoma Narrows Bridge failure, and undergraduate physics textbooks, Amer. J. Physics, 59 (1991), 118-124. 
    [7] D. Bonheure, F. Gazzola and E. Moreira dos Santos, Periodic solutions and torsional instability in a nonlinear nonlocal plate equation, to appear in SIAM J. Math. Anal., 51 (2019), 3052–3091. doi: 10.1137/18M1221242.
    [8] D. Burgreen, Free vibrations of a pin-ended column with constant distance between pin ends, J. Appl. Mech., 18 (1951), 135-139. 
    [9] E. I. Butikov, Subharmonic resonances of the parametrically driven pendulum, J. Phys. A: Math. Gen., 35 (2002), 6209-6231. 
    [10] I. D. Chueshov, Introduction to the Theory of Infinite-Dimensional Dissipative Systems, University Lectures in Contemporary Mathematics, AKTA, Kharkiv, 1999.
    [11] E. N. Dancer and R. Ortega, The index of Lyapunov stable fixed points in two dimensions, J. Dyn. Diff. Equat., 6 (1994), 631-637.  doi: 10.1007/BF02218851.
    [12] E. H. Dowell, Flutter of a buckled plate as an example of chaotic motion of a deterministic autonomous system, J. Sound Vibration, 85 (1982), 333-344.  doi: 10.1016/0022-460X(82)90259-0.
    [13] V. J. FerreiraF. Gazzola and E. Moreira dos Santos, Instability of modes in a partially hinged rectangular plate, J. Diff. Eq., 261 (2016), 6302-6340.  doi: 10.1016/j.jde.2016.08.037.
    [14] A. Ferrero and F. Gazzola, A partially hinged rectangular plate as a model for suspension bridges, Discrete Contin. Dyn. Syst., 35 (2015), 5879-5908.  doi: 10.3934/dcds.2015.35.5879.
    [15] C. Fitouri and A. Haraux, Boundedness and stability for the damped and forced single well Duffing equation, Discrete Contin. Dyn. Syst., 33 (2013), 211-223.  doi: 10.3934/dcds.2013.33.211.
    [16] C. Fitouri and A. Haraux, Sharp estimates of bounded solutions to some semilinear second order dissipative equations, J. Math. Pures Appl., 92 (2009), 313-321.  doi: 10.1016/j.matpur.2009.04.010.
    [17] M. Garrione and F. Gazzola, Loss of energy concentration in nonlinear evolution beam equations, J. Nonlinear Science, 27 (2017), 1789-1827.  doi: 10.1007/s00332-017-9386-1.
    [18] M. Garrione and F. Gazzola, Nonlinear equations and stability for beams and degenerate plates with several intermediate piers, SpringerBriefs in Mathematics, Springer, Cham, 2019.
    [19] S. Gasmi and A. Haraux, N-cyclic functions and multiple subharmonic solutions of Duffing's equation, J. Math. Pures Appl., 97 (2012), 411-423.  doi: 10.1016/j.matpur.2009.08.005.
    [20] F. Gazzola, Mathematical Models for Suspension Bridges, Modeling, Simulation and Applications 15, Springer, Cham, 2015. doi: 10.1007/978-3-319-15434-3.
    [21] M. GhisiM. Gobbino and A. Haraux, An infinite dimensional Duffing-like evolution equation with linear dissipation and an asymptotically small source term, Nonlinear Anal. Real World Appl., 43 (2018), 167-191.  doi: 10.1016/j.nonrwa.2018.02.007.
    [22] A. Haraux, On the double well Duffing equation with a small bounded forcing term, Rend. Accad. Naz. Sci. XL Mem. Mat. Appl., 29 (2005), 207-230. 
    [23] G. Herrmann and W. Hauger, On the interrelation of divergence, flutter and auto-parametric resonance, Ingenieur-Archiv, 42 (1973), 81-88. 
    [24] J. S. HowellI. Lasiecka and J. T. Webster, Quasi-stability and exponential attractors for a non-gradient system: Applications to piston-theoretic plates with internal damping, Evol. Equ. Control Theory, 5 (2016), 567-603.  doi: 10.3934/eect.2016020.
    [25] A. Jenkins, Self-oscillation, Physics Reports, 525 (2013), 167-222.  doi: 10.1016/j.physrep.2012.10.007.
    [26] G. H. Knightly and D. Sather, Nonlinear buckled states of rectangular plates, Arch. Ration. Mech. Anal., 54 (1974), 356-372.  doi: 10.1007/BF00249196.
    [27] E. Mathieu, Mémoire sur le mouvement vibratoire d'une membrane de forme elliptique, J. Math. Pures Appl., 13 (1868), 137-203. 
    [28] F. I. Njoku and P. Omari, Stability properties of periodic solutions of a Duffing equation in the presence of lower and upper solutions, Appl. Math. Comput., 135 (2003), 471-490.  doi: 10.1016/S0096-3003(02)00062-0.
    [29] R. Ortega, Topological degree and stability of periodic solutions for certain differential equations, J. London Math. Soc., 42 (1990), 505-516.  doi: 10.1112/jlms/s2-42.3.505.
    [30] M. P. PaïdoussisS. J. Price and  E. de LangreFluid-structure Interactions. Cross-Flow-Induced Instabilities, Cambridge University Press, Cambridge, 2011. 
    [31] R. H. Scanlan, The action of flexible bridges under wind, Ⅰ: Flutter theory, Ⅱ: Buffeting theory, J. Sound and Vibration, 60 (1978), 187–199 & 201–211.
    [32] R. Scott, In the Wake of Tacoma. Suspension Bridges and the Quest for Aerodynamic Stability, ASCE, Reston, 2001.
    [33] Tacoma Narrows Bridge collapse, (video), 1940, http://www.youtube.com/watch?v=3mclp9QmCGs.
    [34] R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Applied Mathematical Sciences 68, Springer, New York, 1997. doi: 10.1007/978-1-4612-0645-3.
    [35] S. Woinowsky-Krieger, The effect of an axial force on the vibration of hinged bars, J. Appl. Mech., 17 (1950), 35-36. 
    [36] V. A. Yakubovich and V. M. Starzhinskii, Linear differential equations with periodic coefficients, Russian Original in Izdat, Nauka, Moscow, J. Wiley & Sons, New York, 1 (1975), xii+386 pp.; 2 (1975), 387–839.
  • 加载中

Figures(8)

SHARE

Article Metrics

HTML views(1976) PDF downloads(351) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return