March  2020, 9(1): 275-299. doi: 10.3934/eect.2020006

Stability analysis in some strongly prestressed rectangular plates

1. 

Maths Department, Shanghai Normal University, Shanghai 200234, China

2. 

Maths Department, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano, Italy

Received  December 2018 Published  August 2019

We consider an evolution plate equation aiming to model the motion of the deck of a periodically forced strongly prestressed suspension bridge. Using the prestress assumption, we show the appearance of multiple time-periodic uni-modal longitudinal solutions and we discuss their stability. Then, we investigate how these solutions exchange energy with a torsional mode. Although the problem is forced, we find a portrait where stability and instability regions alternate. The techniques used rely on ODE analysis of stability and are complemented with numerical simulations.

Citation: Jifeng Chu, Maurizio Garrione, Filippo Gazzola. Stability analysis in some strongly prestressed rectangular plates. Evolution Equations & Control Theory, 2020, 9 (1) : 275-299. doi: 10.3934/eect.2020006
References:
[1]

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards Applied Mathematics Series 55, Washington, D. C., 1964. Google Scholar

[2]

O. H. Ammann, T. von Kármán and G. B. Woodruff, The Failure of the Tacoma Narrows Bridge, Technical Report, Federal Works Agency. Washington, D. C., 1941.Google Scholar

[3]

U. BattistiE. BerchioA. Ferrero and F. Gazzola, Energy transfer between modes in a nonlinear beam equation, J. Math. Pures Appl., 108 (2017), 885-917. doi: 10.1016/j.matpur.2017.05.010. Google Scholar

[4]

E. BerchioA. Ferrero and F. Gazzola, Structural instability of nonlinear plates modelling suspension bridges: Mathematical answers to some long-standing questions, Nonlinear Analysis Real World Applications, 28 (2016), 91-125. doi: 10.1016/j.nonrwa.2015.09.005. Google Scholar

[5]

H. M. Berger, A new approach to the analysis of large deflections of plates, J. Appl. Mech., 22 (1955), 465-472. Google Scholar

[6]

K. Y. Billah and R. H. Scanlan, Resonance, Tacoma Narrows Bridge failure, and undergraduate physics textbooks, Amer. J. Physics, 59 (1991), 118-124. Google Scholar

[7]

D. Bonheure, F. Gazzola and E. Moreira dos Santos, Periodic solutions and torsional instability in a nonlinear nonlocal plate equation, to appear in SIAM J. Math. Anal., 51 (2019), 3052–3091. doi: 10.1137/18M1221242. Google Scholar

[8]

D. Burgreen, Free vibrations of a pin-ended column with constant distance between pin ends, J. Appl. Mech., 18 (1951), 135-139. Google Scholar

[9]

E. I. Butikov, Subharmonic resonances of the parametrically driven pendulum, J. Phys. A: Math. Gen., 35 (2002), 6209-6231. Google Scholar

[10]

I. D. Chueshov, Introduction to the Theory of Infinite-Dimensional Dissipative Systems, University Lectures in Contemporary Mathematics, AKTA, Kharkiv, 1999. Google Scholar

[11]

E. N. Dancer and R. Ortega, The index of Lyapunov stable fixed points in two dimensions, J. Dyn. Diff. Equat., 6 (1994), 631-637. doi: 10.1007/BF02218851. Google Scholar

[12]

E. H. Dowell, Flutter of a buckled plate as an example of chaotic motion of a deterministic autonomous system, J. Sound Vibration, 85 (1982), 333-344. doi: 10.1016/0022-460X(82)90259-0. Google Scholar

[13]

V. J. FerreiraF. Gazzola and E. Moreira dos Santos, Instability of modes in a partially hinged rectangular plate, J. Diff. Eq., 261 (2016), 6302-6340. doi: 10.1016/j.jde.2016.08.037. Google Scholar

[14]

A. Ferrero and F. Gazzola, A partially hinged rectangular plate as a model for suspension bridges, Discrete Contin. Dyn. Syst., 35 (2015), 5879-5908. doi: 10.3934/dcds.2015.35.5879. Google Scholar

[15]

C. Fitouri and A. Haraux, Boundedness and stability for the damped and forced single well Duffing equation, Discrete Contin. Dyn. Syst., 33 (2013), 211-223. doi: 10.3934/dcds.2013.33.211. Google Scholar

[16]

C. Fitouri and A. Haraux, Sharp estimates of bounded solutions to some semilinear second order dissipative equations, J. Math. Pures Appl., 92 (2009), 313-321. doi: 10.1016/j.matpur.2009.04.010. Google Scholar

[17]

M. Garrione and F. Gazzola, Loss of energy concentration in nonlinear evolution beam equations, J. Nonlinear Science, 27 (2017), 1789-1827. doi: 10.1007/s00332-017-9386-1. Google Scholar

[18]

M. Garrione and F. Gazzola, Nonlinear equations and stability for beams and degenerate plates with several intermediate piers, SpringerBriefs in Mathematics, Springer, Cham, 2019.Google Scholar

[19]

S. Gasmi and A. Haraux, N-cyclic functions and multiple subharmonic solutions of Duffing's equation, J. Math. Pures Appl., 97 (2012), 411-423. doi: 10.1016/j.matpur.2009.08.005. Google Scholar

[20]

F. Gazzola, Mathematical Models for Suspension Bridges, Modeling, Simulation and Applications 15, Springer, Cham, 2015. doi: 10.1007/978-3-319-15434-3. Google Scholar

[21]

M. GhisiM. Gobbino and A. Haraux, An infinite dimensional Duffing-like evolution equation with linear dissipation and an asymptotically small source term, Nonlinear Anal. Real World Appl., 43 (2018), 167-191. doi: 10.1016/j.nonrwa.2018.02.007. Google Scholar

[22]

A. Haraux, On the double well Duffing equation with a small bounded forcing term, Rend. Accad. Naz. Sci. XL Mem. Mat. Appl., 29 (2005), 207-230. Google Scholar

[23]

G. Herrmann and W. Hauger, On the interrelation of divergence, flutter and auto-parametric resonance, Ingenieur-Archiv, 42 (1973), 81-88. Google Scholar

[24]

J. S. HowellI. Lasiecka and J. T. Webster, Quasi-stability and exponential attractors for a non-gradient system: Applications to piston-theoretic plates with internal damping, Evol. Equ. Control Theory, 5 (2016), 567-603. doi: 10.3934/eect.2016020. Google Scholar

[25]

A. Jenkins, Self-oscillation, Physics Reports, 525 (2013), 167-222. doi: 10.1016/j.physrep.2012.10.007. Google Scholar

[26]

G. H. Knightly and D. Sather, Nonlinear buckled states of rectangular plates, Arch. Ration. Mech. Anal., 54 (1974), 356-372. doi: 10.1007/BF00249196. Google Scholar

[27]

E. Mathieu, Mémoire sur le mouvement vibratoire d'une membrane de forme elliptique, J. Math. Pures Appl., 13 (1868), 137-203. Google Scholar

[28]

F. I. Njoku and P. Omari, Stability properties of periodic solutions of a Duffing equation in the presence of lower and upper solutions, Appl. Math. Comput., 135 (2003), 471-490. doi: 10.1016/S0096-3003(02)00062-0. Google Scholar

[29]

R. Ortega, Topological degree and stability of periodic solutions for certain differential equations, J. London Math. Soc., 42 (1990), 505-516. doi: 10.1112/jlms/s2-42.3.505. Google Scholar

[30] M. P. PaïdoussisS. J. Price and E. de Langre, Fluid-structure Interactions. Cross-Flow-Induced Instabilities, Cambridge University Press, Cambridge, 2011. Google Scholar
[31]

R. H. Scanlan, The action of flexible bridges under wind, Ⅰ: Flutter theory, Ⅱ: Buffeting theory, J. Sound and Vibration, 60 (1978), 187–199 & 201–211.Google Scholar

[32]

R. Scott, In the Wake of Tacoma. Suspension Bridges and the Quest for Aerodynamic Stability, ASCE, Reston, 2001.Google Scholar

[33]

Tacoma Narrows Bridge collapse, (video), 1940, http://www.youtube.com/watch?v=3mclp9QmCGs.Google Scholar

[34]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Applied Mathematical Sciences 68, Springer, New York, 1997. doi: 10.1007/978-1-4612-0645-3. Google Scholar

[35]

S. Woinowsky-Krieger, The effect of an axial force on the vibration of hinged bars, J. Appl. Mech., 17 (1950), 35-36. Google Scholar

[36]

V. A. Yakubovich and V. M. Starzhinskii, Linear differential equations with periodic coefficients, Russian Original in Izdat, Nauka, Moscow, J. Wiley & Sons, New York, 1 (1975), xii+386 pp.; 2 (1975), 387–839. Google Scholar

show all references

References:
[1]

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards Applied Mathematics Series 55, Washington, D. C., 1964. Google Scholar

[2]

O. H. Ammann, T. von Kármán and G. B. Woodruff, The Failure of the Tacoma Narrows Bridge, Technical Report, Federal Works Agency. Washington, D. C., 1941.Google Scholar

[3]

U. BattistiE. BerchioA. Ferrero and F. Gazzola, Energy transfer between modes in a nonlinear beam equation, J. Math. Pures Appl., 108 (2017), 885-917. doi: 10.1016/j.matpur.2017.05.010. Google Scholar

[4]

E. BerchioA. Ferrero and F. Gazzola, Structural instability of nonlinear plates modelling suspension bridges: Mathematical answers to some long-standing questions, Nonlinear Analysis Real World Applications, 28 (2016), 91-125. doi: 10.1016/j.nonrwa.2015.09.005. Google Scholar

[5]

H. M. Berger, A new approach to the analysis of large deflections of plates, J. Appl. Mech., 22 (1955), 465-472. Google Scholar

[6]

K. Y. Billah and R. H. Scanlan, Resonance, Tacoma Narrows Bridge failure, and undergraduate physics textbooks, Amer. J. Physics, 59 (1991), 118-124. Google Scholar

[7]

D. Bonheure, F. Gazzola and E. Moreira dos Santos, Periodic solutions and torsional instability in a nonlinear nonlocal plate equation, to appear in SIAM J. Math. Anal., 51 (2019), 3052–3091. doi: 10.1137/18M1221242. Google Scholar

[8]

D. Burgreen, Free vibrations of a pin-ended column with constant distance between pin ends, J. Appl. Mech., 18 (1951), 135-139. Google Scholar

[9]

E. I. Butikov, Subharmonic resonances of the parametrically driven pendulum, J. Phys. A: Math. Gen., 35 (2002), 6209-6231. Google Scholar

[10]

I. D. Chueshov, Introduction to the Theory of Infinite-Dimensional Dissipative Systems, University Lectures in Contemporary Mathematics, AKTA, Kharkiv, 1999. Google Scholar

[11]

E. N. Dancer and R. Ortega, The index of Lyapunov stable fixed points in two dimensions, J. Dyn. Diff. Equat., 6 (1994), 631-637. doi: 10.1007/BF02218851. Google Scholar

[12]

E. H. Dowell, Flutter of a buckled plate as an example of chaotic motion of a deterministic autonomous system, J. Sound Vibration, 85 (1982), 333-344. doi: 10.1016/0022-460X(82)90259-0. Google Scholar

[13]

V. J. FerreiraF. Gazzola and E. Moreira dos Santos, Instability of modes in a partially hinged rectangular plate, J. Diff. Eq., 261 (2016), 6302-6340. doi: 10.1016/j.jde.2016.08.037. Google Scholar

[14]

A. Ferrero and F. Gazzola, A partially hinged rectangular plate as a model for suspension bridges, Discrete Contin. Dyn. Syst., 35 (2015), 5879-5908. doi: 10.3934/dcds.2015.35.5879. Google Scholar

[15]

C. Fitouri and A. Haraux, Boundedness and stability for the damped and forced single well Duffing equation, Discrete Contin. Dyn. Syst., 33 (2013), 211-223. doi: 10.3934/dcds.2013.33.211. Google Scholar

[16]

C. Fitouri and A. Haraux, Sharp estimates of bounded solutions to some semilinear second order dissipative equations, J. Math. Pures Appl., 92 (2009), 313-321. doi: 10.1016/j.matpur.2009.04.010. Google Scholar

[17]

M. Garrione and F. Gazzola, Loss of energy concentration in nonlinear evolution beam equations, J. Nonlinear Science, 27 (2017), 1789-1827. doi: 10.1007/s00332-017-9386-1. Google Scholar

[18]

M. Garrione and F. Gazzola, Nonlinear equations and stability for beams and degenerate plates with several intermediate piers, SpringerBriefs in Mathematics, Springer, Cham, 2019.Google Scholar

[19]

S. Gasmi and A. Haraux, N-cyclic functions and multiple subharmonic solutions of Duffing's equation, J. Math. Pures Appl., 97 (2012), 411-423. doi: 10.1016/j.matpur.2009.08.005. Google Scholar

[20]

F. Gazzola, Mathematical Models for Suspension Bridges, Modeling, Simulation and Applications 15, Springer, Cham, 2015. doi: 10.1007/978-3-319-15434-3. Google Scholar

[21]

M. GhisiM. Gobbino and A. Haraux, An infinite dimensional Duffing-like evolution equation with linear dissipation and an asymptotically small source term, Nonlinear Anal. Real World Appl., 43 (2018), 167-191. doi: 10.1016/j.nonrwa.2018.02.007. Google Scholar

[22]

A. Haraux, On the double well Duffing equation with a small bounded forcing term, Rend. Accad. Naz. Sci. XL Mem. Mat. Appl., 29 (2005), 207-230. Google Scholar

[23]

G. Herrmann and W. Hauger, On the interrelation of divergence, flutter and auto-parametric resonance, Ingenieur-Archiv, 42 (1973), 81-88. Google Scholar

[24]

J. S. HowellI. Lasiecka and J. T. Webster, Quasi-stability and exponential attractors for a non-gradient system: Applications to piston-theoretic plates with internal damping, Evol. Equ. Control Theory, 5 (2016), 567-603. doi: 10.3934/eect.2016020. Google Scholar

[25]

A. Jenkins, Self-oscillation, Physics Reports, 525 (2013), 167-222. doi: 10.1016/j.physrep.2012.10.007. Google Scholar

[26]

G. H. Knightly and D. Sather, Nonlinear buckled states of rectangular plates, Arch. Ration. Mech. Anal., 54 (1974), 356-372. doi: 10.1007/BF00249196. Google Scholar

[27]

E. Mathieu, Mémoire sur le mouvement vibratoire d'une membrane de forme elliptique, J. Math. Pures Appl., 13 (1868), 137-203. Google Scholar

[28]

F. I. Njoku and P. Omari, Stability properties of periodic solutions of a Duffing equation in the presence of lower and upper solutions, Appl. Math. Comput., 135 (2003), 471-490. doi: 10.1016/S0096-3003(02)00062-0. Google Scholar

[29]

R. Ortega, Topological degree and stability of periodic solutions for certain differential equations, J. London Math. Soc., 42 (1990), 505-516. doi: 10.1112/jlms/s2-42.3.505. Google Scholar

[30] M. P. PaïdoussisS. J. Price and E. de Langre, Fluid-structure Interactions. Cross-Flow-Induced Instabilities, Cambridge University Press, Cambridge, 2011. Google Scholar
[31]

R. H. Scanlan, The action of flexible bridges under wind, Ⅰ: Flutter theory, Ⅱ: Buffeting theory, J. Sound and Vibration, 60 (1978), 187–199 & 201–211.Google Scholar

[32]

R. Scott, In the Wake of Tacoma. Suspension Bridges and the Quest for Aerodynamic Stability, ASCE, Reston, 2001.Google Scholar

[33]

Tacoma Narrows Bridge collapse, (video), 1940, http://www.youtube.com/watch?v=3mclp9QmCGs.Google Scholar

[34]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Applied Mathematical Sciences 68, Springer, New York, 1997. doi: 10.1007/978-1-4612-0645-3. Google Scholar

[35]

S. Woinowsky-Krieger, The effect of an axial force on the vibration of hinged bars, J. Appl. Mech., 17 (1950), 35-36. Google Scholar

[36]

V. A. Yakubovich and V. M. Starzhinskii, Linear differential equations with periodic coefficients, Russian Original in Izdat, Nauka, Moscow, J. Wiley & Sons, New York, 1 (1975), xii+386 pp.; 2 (1975), 387–839. Google Scholar

Figure 1.  The Deer Isle Bridge: with permission of Thaddeus Roan
Figure 2.  The choice of the lower and upper solutions in the proof of the bounds and of the stability properties of $ \wp^1 $ (left) and $ \wp^2, \wp^3 $ (right)
Figure 3.  The components $ U(t) $ (left) and $ V(t) $ (right) in (42), with (46) and $ U_0 = 0.2 $, $ V_0 = 0.01 $
Figure 4.  The components $ U(t) $ (left) and $ V(t) $ (right) in (42), with (46) and $ U_0 = 0.2 $, $ V_0 = 2 $
Figure 5.  The components $ U(t) $ (left) and $ V(t) $ (right) in (42), with (46) and $ U_0 = 0.2 $, $ V_0 = 10 $
Figure 6.  The $ V $-component of the solution of (44) for values of the parameters given by (48)
Figure 7.  The $ V $-component of the solution of (44) for values of the parameters given by (49)
Figure 8.  The $ V $-component of the solution of (44) for values of the parameters given by (50)
[1]

Pietro-Luciano Buono, Daniel C. Offin. Instability criterion for periodic solutions with spatio-temporal symmetries in Hamiltonian systems. Journal of Geometric Mechanics, 2017, 9 (4) : 439-457. doi: 10.3934/jgm.2017017

[2]

Antonio J. Ureña. Instability of periodic minimals. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 345-357. doi: 10.3934/dcds.2013.33.345

[3]

Igor Chueshov. Remark on an elastic plate interacting with a gas in a semi-infinite tube: Periodic solutions. Evolution Equations & Control Theory, 2016, 5 (4) : 561-566. doi: 10.3934/eect.2016019

[4]

Kota Kumazaki. Periodic solutions for non-isothermal phase transition models. Conference Publications, 2011, 2011 (Special) : 891-902. doi: 10.3934/proc.2011.2011.891

[5]

Wan-Tong Li, Yong-Hong Fan. Periodic solutions in a delayed predator-prey models with nonmonotonic functional response. Discrete & Continuous Dynamical Systems - B, 2007, 8 (1) : 175-185. doi: 10.3934/dcdsb.2007.8.175

[6]

P. J. McKenna. Oscillations in suspension bridges, vertical and torsional. Discrete & Continuous Dynamical Systems - S, 2014, 7 (4) : 785-791. doi: 10.3934/dcdss.2014.7.785

[7]

Yongqin Liu. Asymptotic behavior of solutions to a nonlinear plate equation with memory. Communications on Pure & Applied Analysis, 2017, 16 (2) : 533-556. doi: 10.3934/cpaa.2017027

[8]

Shikuan Mao, Yongqin Liu. Decay of solutions to generalized plate type equations with memory. Kinetic & Related Models, 2014, 7 (1) : 121-131. doi: 10.3934/krm.2014.7.121

[9]

Takayoshi Ogawa, Hiroshi Wakui. Stability and instability of solutions to the drift-diffusion system. Evolution Equations & Control Theory, 2017, 6 (4) : 587-597. doi: 10.3934/eect.2017029

[10]

Stephen Pankavich, Petronela Radu. Nonlinear instability of solutions in parabolic and hyperbolic diffusion. Evolution Equations & Control Theory, 2013, 2 (2) : 403-422. doi: 10.3934/eect.2013.2.403

[11]

Igor Chueshov, Stanislav Kolbasin. Long-time dynamics in plate models with strong nonlinear damping. Communications on Pure & Applied Analysis, 2012, 11 (2) : 659-674. doi: 10.3934/cpaa.2012.11.659

[12]

Hong Cai, Zhong Tan, Qiuju Xu. Time periodic solutions of the non-isentropic compressible fluid models of Korteweg type. Kinetic & Related Models, 2015, 8 (1) : 29-51. doi: 10.3934/krm.2015.8.29

[13]

Shikuan Mao, Yongqin Liu. Decay property for solutions to plate type equations with variable coefficients. Kinetic & Related Models, 2017, 10 (3) : 785-797. doi: 10.3934/krm.2017031

[14]

Irena Lasiecka, Mathias Wilke. Maximal regularity and global existence of solutions to a quasilinear thermoelastic plate system. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5189-5202. doi: 10.3934/dcds.2013.33.5189

[15]

John M. Hong, Cheng-Hsiung Hsu, Bo-Chih Huang, Tzi-Sheng Yang. Geometric singular perturbation approach to the existence and instability of stationary waves for viscous traffic flow models. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1501-1526. doi: 10.3934/cpaa.2013.12.1501

[16]

Mark Lewis, Daniel Offin, Pietro-Luciano Buono, Mitchell Kovacic. Instability of the periodic hip-hop orbit in the $2N$-body problem with equal masses. Discrete & Continuous Dynamical Systems - A, 2013, 33 (3) : 1137-1155. doi: 10.3934/dcds.2013.33.1137

[17]

Juvencio Alberto Betancourt-Mar, Víctor Alfonso Méndez-Guerrero, Carlos Hernández-Rodríguez, José Manuel Nieto-Villar. Theoretical models for chronotherapy: Periodic perturbations in hyperchaos. Mathematical Biosciences & Engineering, 2010, 7 (3) : 553-560. doi: 10.3934/mbe.2010.7.553

[18]

Iryna Ryzhkova-Gerasymova. Long time behaviour of strong solutions to interactive fluid-plate system without rotational inertia. Discrete & Continuous Dynamical Systems - B, 2018, 23 (3) : 1243-1265. doi: 10.3934/dcdsb.2018150

[19]

Yongqin Liu, Shuichi Kawashima. Global existence and asymptotic behavior of solutions for quasi-linear dissipative plate equation. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 1113-1139. doi: 10.3934/dcds.2011.29.1113

[20]

José Luis Bravo, Manuel Fernández, Antonio Tineo. Periodic solutions of a periodic scalar piecewise ode. Communications on Pure & Applied Analysis, 2007, 6 (1) : 213-228. doi: 10.3934/cpaa.2007.6.213

2018 Impact Factor: 1.048

Article outline

Figures and Tables

[Back to Top]