• Previous Article
    On the three dimensional Kelvin-Voigt fluids: global solvability, exponential stability and exact controllability of Galerkin approximations
  • EECT Home
  • This Issue
  • Next Article
    Stochastic porous media equations with divergence Itô noise
doi: 10.3934/eect.2020009

Decay rates for second order evolution equations in Hilbert spaces with nonlinear time-dependent damping

Shanghai Key Laboratory for Contemporary Applied Mathematics, School of Mathematical Sciences, Fudan University, Shanghai 200433, China

Corresponding author: Ti-Jun Xiao

Received  January 2019 Revised  April 2019 Published  August 2019

Fund Project: The work was supported partly by the NSF of China (11771091, 11831011), the Fudan University (IDH 1411016), and the Shanghai Key Laboratory for Contemporary Applied Mathematics (08DZ2271900)

The paper is concerned with the Cauchy problem for second order hyperbolic evolution equations with nonlinear source in a Hilbert space, under the effect of nonlinear time-dependent damping. With the help of the method of weighted energy integral, we obtain explicit decay rate estimates for the solutions of the equation in terms of the damping coefficient and two nonlinear exponents. Specialized to the case of linear, time-independent damping, we recover the corresponding decay rates originally obtained in [3] via a different way. Moreover, examples are given to show how to apply our abstract results to concrete problems concerning damped wave equations, integro-differential damped equations, as well as damped plate equations.

Citation: Jun-Ren Luo, Ti-Jun Xiao. Decay rates for second order evolution equations in Hilbert spaces with nonlinear time-dependent damping. Evolution Equations & Control Theory, doi: 10.3934/eect.2020009
References:
[1]

M. Daoulatli, Rates of decay for the wave systems with time-dependent damping, Discrete Contin. Dyn. Syst., 31 (2011), 407-443.  doi: 10.3934/dcds.2011.31.407.  Google Scholar

[2]

H. O. Fattorini, Second Order Linear Differential Equations in Banach Spaces, North-Holland Mathematics Studies, 108. North-Holland Publishing Co., Amsterdam, 1985.  Google Scholar

[3]

M. GhisiM. Gobbino and A. Haraux, Optimal decay estimates for the general solution to a class of semil-linear dissipative hyperbolic eqiations, J. Eur. Math. Soc. (JEMS), 18 (2016), 1961-1982.  doi: 10.4171/JEMS/635.  Google Scholar

[4]

M. GhisiM. Gobbino and A. Haraux, Finding the exact decay rate of all solutions to some second order evolution equations with dissipation, J. Funct. Anal., 271 (2016), 2359-2395.  doi: 10.1016/j.jfa.2016.08.010.  Google Scholar

[5]

J. A. Goldstein, Semigroups of Linear Operators and Applications, Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York, 1985.  Google Scholar

[6]

A. Haraux, Slow and fast decay of solutions to some second order evolution equations, J. Anal. Math., 95 (2005), 297-321.  doi: 10.1007/BF02791505.  Google Scholar

[7]

A. Haraux and M. A. Jendoubi, Asymptotics for a second order differential equation with a linear, slowly time-decaying damping term, Evolution Equations and Control Theory, 2 (2013), 461-470.  doi: 10.3934/eect.2013.2.461.  Google Scholar

[8]

A. Haraux and M. A. Jendoubi, The Convergence Problem for Dissipative Autonomous Systems, Classical Methods and Recent Advances, BCAM SpringerBriefs. Springer, Cham; BCAM Basque Center for Applied Mathematics, Bilbao, 2015. doi: 10.1007/978-3-319-23407-6.  Google Scholar

[9]

A. HarauxP. Martinez and J. Vancostenoble, Asymptotic stability for intermittently controlled second-order evolution equations, SIAM J. Control Optim., 43 (2005), 2089-2108.  doi: 10.1137/S0363012903436569.  Google Scholar

[10]

Z. Jiao and T.-J. Xiao, Convergence and speed estimates for semilinear wave systems with nonautonomous damping, Math. Methods Appl. Sci., 39 (2016), 5465-5474.  doi: 10.1002/mma.3931.  Google Scholar

[11]

K.-P. JinJ. Liang and T.-J. Xiao, Coupled second order evolution equations with fading memory: Optimal energy decay rate, J. Differential Equations, 257 (2014), 1501-1528.  doi: 10.1016/j.jde.2014.05.018.  Google Scholar

[12]

P. Martinez, A new method to obtain decay rate estimates for dissipative systems, ESAIM Control Optim. Calc. Var., 4 (1999), 419-444.  doi: 10.1051/cocv:1999116.  Google Scholar

[13]

P. Martinez, Precise decay rate estimates for time-dependent dissipative systems, Israel J. Math., 119 (2000), 291-324.  doi: 10.1007/BF02810672.  Google Scholar

[14]

R. May, Long time behavior for a semilinear hyperbolic equation with asymptotically vanishing damping term and convex potential, J. Math. Anal. Appl., 430 (2015), 410-416.  doi: 10.1016/j.jmaa.2015.04.067.  Google Scholar

[15]

M. Nakao, On the time decay of solutions of the wave equation with a local time-dependent nonlinear dissipation, Adv. Math. Sci. Appl., 7 (1997), 317-331.   Google Scholar

[16]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences 44, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[17]

T.-J. Xiao and J. Liang, Coupled second order semilinear evolution equations indirectly damped via memory effects, J. Differential Equations, 254 (2013), 2128-2157.  doi: 10.1016/j.jde.2012.11.019.  Google Scholar

show all references

References:
[1]

M. Daoulatli, Rates of decay for the wave systems with time-dependent damping, Discrete Contin. Dyn. Syst., 31 (2011), 407-443.  doi: 10.3934/dcds.2011.31.407.  Google Scholar

[2]

H. O. Fattorini, Second Order Linear Differential Equations in Banach Spaces, North-Holland Mathematics Studies, 108. North-Holland Publishing Co., Amsterdam, 1985.  Google Scholar

[3]

M. GhisiM. Gobbino and A. Haraux, Optimal decay estimates for the general solution to a class of semil-linear dissipative hyperbolic eqiations, J. Eur. Math. Soc. (JEMS), 18 (2016), 1961-1982.  doi: 10.4171/JEMS/635.  Google Scholar

[4]

M. GhisiM. Gobbino and A. Haraux, Finding the exact decay rate of all solutions to some second order evolution equations with dissipation, J. Funct. Anal., 271 (2016), 2359-2395.  doi: 10.1016/j.jfa.2016.08.010.  Google Scholar

[5]

J. A. Goldstein, Semigroups of Linear Operators and Applications, Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York, 1985.  Google Scholar

[6]

A. Haraux, Slow and fast decay of solutions to some second order evolution equations, J. Anal. Math., 95 (2005), 297-321.  doi: 10.1007/BF02791505.  Google Scholar

[7]

A. Haraux and M. A. Jendoubi, Asymptotics for a second order differential equation with a linear, slowly time-decaying damping term, Evolution Equations and Control Theory, 2 (2013), 461-470.  doi: 10.3934/eect.2013.2.461.  Google Scholar

[8]

A. Haraux and M. A. Jendoubi, The Convergence Problem for Dissipative Autonomous Systems, Classical Methods and Recent Advances, BCAM SpringerBriefs. Springer, Cham; BCAM Basque Center for Applied Mathematics, Bilbao, 2015. doi: 10.1007/978-3-319-23407-6.  Google Scholar

[9]

A. HarauxP. Martinez and J. Vancostenoble, Asymptotic stability for intermittently controlled second-order evolution equations, SIAM J. Control Optim., 43 (2005), 2089-2108.  doi: 10.1137/S0363012903436569.  Google Scholar

[10]

Z. Jiao and T.-J. Xiao, Convergence and speed estimates for semilinear wave systems with nonautonomous damping, Math. Methods Appl. Sci., 39 (2016), 5465-5474.  doi: 10.1002/mma.3931.  Google Scholar

[11]

K.-P. JinJ. Liang and T.-J. Xiao, Coupled second order evolution equations with fading memory: Optimal energy decay rate, J. Differential Equations, 257 (2014), 1501-1528.  doi: 10.1016/j.jde.2014.05.018.  Google Scholar

[12]

P. Martinez, A new method to obtain decay rate estimates for dissipative systems, ESAIM Control Optim. Calc. Var., 4 (1999), 419-444.  doi: 10.1051/cocv:1999116.  Google Scholar

[13]

P. Martinez, Precise decay rate estimates for time-dependent dissipative systems, Israel J. Math., 119 (2000), 291-324.  doi: 10.1007/BF02810672.  Google Scholar

[14]

R. May, Long time behavior for a semilinear hyperbolic equation with asymptotically vanishing damping term and convex potential, J. Math. Anal. Appl., 430 (2015), 410-416.  doi: 10.1016/j.jmaa.2015.04.067.  Google Scholar

[15]

M. Nakao, On the time decay of solutions of the wave equation with a local time-dependent nonlinear dissipation, Adv. Math. Sci. Appl., 7 (1997), 317-331.   Google Scholar

[16]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences 44, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[17]

T.-J. Xiao and J. Liang, Coupled second order semilinear evolution equations indirectly damped via memory effects, J. Differential Equations, 254 (2013), 2128-2157.  doi: 10.1016/j.jde.2012.11.019.  Google Scholar

[1]

Fengjuan Meng, Meihua Yang, Chengkui Zhong. Attractors for wave equations with nonlinear damping on time-dependent space. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 205-225. doi: 10.3934/dcdsb.2016.21.205

[2]

Claudianor O. Alves, M. M. Cavalcanti, Valeria N. Domingos Cavalcanti, Mohammad A. Rammaha, Daniel Toundykov. On existence, uniform decay rates and blow up for solutions of systems of nonlinear wave equations with damping and source terms. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 583-608. doi: 10.3934/dcdss.2009.2.583

[3]

Akio Ito, Noriaki Yamazaki, Nobuyuki Kenmochi. Attractors of nonlinear evolution systems generated by time-dependent subdifferentials in Hilbert spaces. Conference Publications, 1998, 1998 (Special) : 327-349. doi: 10.3934/proc.1998.1998.327

[4]

Marcello D'Abbicco, Ruy Coimbra Charão, Cleverson Roberto da Luz. Sharp time decay rates on a hyperbolic plate model under effects of an intermediate damping with a time-dependent coefficient. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2419-2447. doi: 10.3934/dcds.2016.36.2419

[5]

Lizhi Ruan, Changjiang Zhu. Boundary layer for nonlinear evolution equations with damping and diffusion. Discrete & Continuous Dynamical Systems - A, 2012, 32 (1) : 331-352. doi: 10.3934/dcds.2012.32.331

[6]

A. Kh. Khanmamedov. Global attractors for strongly damped wave equations with displacement dependent damping and nonlinear source term of critical exponent. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 119-138. doi: 10.3934/dcds.2011.31.119

[7]

Raegan Higgins. Asymptotic behavior of second-order nonlinear dynamic equations on time scales. Discrete & Continuous Dynamical Systems - B, 2010, 13 (3) : 609-622. doi: 10.3934/dcdsb.2010.13.609

[8]

Mogtaba Mohammed, Mamadou Sango. Homogenization of nonlinear hyperbolic stochastic partial differential equations with nonlinear damping and forcing. Networks & Heterogeneous Media, 2019, 14 (2) : 341-369. doi: 10.3934/nhm.2019014

[9]

Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027

[10]

Annamaria Canino, Elisa De Giorgio, Berardino Sciunzi. Second order regularity for degenerate nonlinear elliptic equations. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 4231-4242. doi: 10.3934/dcds.2018184

[11]

Moez Daoulatli. Rates of decay for the wave systems with time dependent damping. Discrete & Continuous Dynamical Systems - A, 2011, 31 (2) : 407-443. doi: 10.3934/dcds.2011.31.407

[12]

Y. Efendiev, B. Popov. On homogenization of nonlinear hyperbolic equations. Communications on Pure & Applied Analysis, 2005, 4 (2) : 295-309. doi: 10.3934/cpaa.2005.4.295

[13]

Mariane Bourgoing. Viscosity solutions of fully nonlinear second order parabolic equations with $L^1$ dependence in time and Neumann boundary conditions. Discrete & Continuous Dynamical Systems - A, 2008, 21 (3) : 763-800. doi: 10.3934/dcds.2008.21.763

[14]

A. Kh. Khanmamedov. Long-time behaviour of wave equations with nonlinear interior damping. Discrete & Continuous Dynamical Systems - A, 2008, 21 (4) : 1185-1198. doi: 10.3934/dcds.2008.21.1185

[15]

Igor Chueshov, Peter E. Kloeden, Meihua Yang. Long term dynamics of second order-in-time stochastic evolution equations with state-dependent delay. Discrete & Continuous Dynamical Systems - B, 2018, 23 (3) : 991-1009. doi: 10.3934/dcdsb.2018139

[16]

Yuri V. Rogovchenko, Fatoş Tuncay. Interval oscillation of a second order nonlinear differential equation with a damping term. Conference Publications, 2007, 2007 (Special) : 883-891. doi: 10.3934/proc.2007.2007.883

[17]

Fabio Punzo. Support properties of solutions to nonlinear parabolic equations with variable density in the hyperbolic space. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 657-670. doi: 10.3934/dcdss.2012.5.657

[18]

Alberto Boscaggin, Fabio Zanolin. Subharmonic solutions for nonlinear second order equations in presence of lower and upper solutions. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 89-110. doi: 10.3934/dcds.2013.33.89

[19]

Saroj Panigrahi, Rakhee Basu. Oscillation results for second order nonlinear neutral differential equations with delay. Conference Publications, 2015, 2015 (special) : 906-912. doi: 10.3934/proc.2015.0906

[20]

Alessandro Fonda, Fabio Zanolin. Bounded solutions of nonlinear second order ordinary differential equations. Discrete & Continuous Dynamical Systems - A, 1998, 4 (1) : 91-98. doi: 10.3934/dcds.1998.4.91

2018 Impact Factor: 1.048

Metrics

  • PDF downloads (39)
  • HTML views (103)
  • Cited by (0)

Other articles
by authors

[Back to Top]