June  2020, 9(2): 399-430. doi: 10.3934/eect.2020011

Null-controllability properties of a fractional wave equation with a memory term

1. 

DeustoTech, University of Deusto, 48007 Bilbao, Basque Country, Spain, Facultad de Ingeniería, Universidad de Deusto, Avenida de las Universidades 24, 48007 Bilbao, Basque Country, Spain

2. 

University of Puerto Rico, Rio Piedras Campus, Department of Mathematics, Faculty of Natural Sciences, 17 University AVE. STE 1701 San Juan PR 00925-2537 (USA)

* Corresponding author: Umberto Biccari

Received  January 2019 Revised  May 2019 Published  August 2019

Fund Project: The work of the first author is supported by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement NO: 694126-DyCon), by the Grant MTM2017-92996-C2-1-R COSNET of MINECO (Spain), and by the ELKARTEK project KK-2018/00083 ROAD2DC of the Basque Government. The work of both authors is supported by the Air Force Office of Scientific Research (AFOSR) under Award NO: FA9550-18-1-0242

We study the null-controllability properties of a one-dimensional wave equation with memory associated with the fractional Laplace operator. The goal is not only to drive the displacement and the velocity to rest at some time-instant but also to require the memory term to vanish at the same time, ensuring that the whole process reaches the equilibrium. The problem being equivalent to a coupled nonlocal PDE-ODE system, in which the ODE component has zero velocity of propagation, we are required to use a moving control strategy. Assuming that the control is acting on an open subset $ \omega(t) $ which is moving with a constant velocity $ c\in\mathbb{R} $, the main result of the paper states that the equation is null controllable in a sufficiently large time $ T $ and for initial data belonging to suitable fractional order Sobolev spaces. The proof will use a careful analysis of the spectrum of the operator associated with the system and an application of a classical moment method.

Citation: Umberto Biccari, Mahamadi Warma. Null-controllability properties of a fractional wave equation with a memory term. Evolution Equations & Control Theory, 2020, 9 (2) : 399-430. doi: 10.3934/eect.2020011
References:
[1]

U. Biccari, Internal control for non-local Schrödinger and wave equations involving the fractional Laplace operator, arXiv preprint, arXiv: 1411.7800. Google Scholar

[2]

U. Biccari and S. Micu, Null-controllability properties of the wave equation with a second order memory term, J. Differential Equations, 267 (2019), 1376-1422.  doi: 10.1016/j.jde.2019.02.009.  Google Scholar

[3]

F. W. Chaves-Silva, L. Rosier and E. Zuazua, Null controllability of a system of viscoelasticity with a moving control, J. Math. Pures Appl. (9), 101 (2014), 198–222, https://doi.org/10.1016/j.matpur.2013.05.009. doi: 10.1016/j.matpur.2013.05.009.  Google Scholar

[4]

F. W. Chaves-Silva, X. Zhang and E. Zuazua, Controllability of evolution equations with memory, SIAM J. Control Optim., 55 (2017), 2437–2459, https://doi.org/10.1137/151004239. doi: 10.1137/151004239.  Google Scholar

[5]

B. Claus and M. Warma, Realization of the fractional laplacian with nonlocal exterior conditions via forms method, arXiv preprint, arXiv: 1904.13312. Google Scholar

[6]

E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521–573, https://doi.org/10.1016/j.bulsci.2011.12.004. doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[7]

A. A. Dubkov, B. Spagnolo and V. V. Uchaikin, Lévy flight superdiffusion: an introduction, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 18 (2008), 2649–2672, https://doi.org/10.1142/S0218127408021877. doi: 10.1142/S0218127408021877.  Google Scholar

[8]

C. G. Gal and M. Warma, Fractional in time semilinear parabolic equations and applications, HAL Id: hal-01578788, hhttps://hal.archives-ouvertes.fr/hal-01578788. Google Scholar

[9]

C. G. Gal and M. Warma, Nonlocal transmission problems with fractional diffusion and boundary conditions on non-smooth interfaces, Comm. Partial Differential Equations, 42 (2017), 579–625, https://doi.org/10.1080/03605302.2017.1295060. doi: 10.1080/03605302.2017.1295060.  Google Scholar

[10]

R. Gorenflo, F. Mainardi and A. Vivoli, Continuous-time random walk and parametric subordination in fractional diffusion, Chaos Solitons Fractals, 34 (2007), 87–103, https://doi.org/10.1016/j.chaos.2007.01.052. doi: 10.1016/j.chaos.2007.01.052.  Google Scholar

[11]

J.-P. Kahane, Pseudo-périodicité et séries de Fourier lacunaires, Ann. Sci. École Norm. Sup. (3), 79 (1962), 93–150, http://www.numdam.org/item?id=ASENS_1962_3_79_2_93_0. doi: 10.24033/asens.1108.  Google Scholar

[12]

J. U. Kim, Control of a second-order integro-differential equation, SIAM J. Control Optim., 31 (1993), 101–110, https://doi.org/10.1137/0331008. doi: 10.1137/0331008.  Google Scholar

[13]

M. Kwaśnicki, Eigenvalues of the fractional Laplace operator in the interval, J. Funct. Anal., 262 (2012), 2379–2402, https://doi.org/10.1016/j.jfa.2011.12.004. doi: 10.1016/j.jfa.2011.12.004.  Google Scholar

[14]

G. Leugering, Exact controllability in viscoelasticity of fading memory type, Applicable Anal., 18 (1984), 221–243, https://doi.org/10.1080/00036818408839521. doi: 10.1080/00036818408839521.  Google Scholar

[15]

G. Leugering, Exact boundary controllability of an integro-differential equation, Appl. Math. Optim., 15 (1987), 223–250, https://doi.org/10.1007/BF01442653. doi: 10.1007/BF01442653.  Google Scholar

[16]

P. Loreti, L. Pandolfi and D. Sforza, Boundary controllability and observability of a viscoelastic string, SIAM J. Control Optim., 50 (2012), 820–844, https://doi.org/10.1137/110827740. doi: 10.1137/110827740.  Google Scholar

[17]

P. Loreti and D. Sforza, Reachability problems for a class of integro-differential equations, J. Differential Equations, 248 (2010), 1711–1755, https://doi.org/10.1016/j.jde.2009.09.016. doi: 10.1016/j.jde.2009.09.016.  Google Scholar

[18]

Q. Lü, X. Zhang and E. Zuazua, Null controllability for wave equations with memory, J. Math. Pures Appl. (9), 108 (2017), 500–531, https://doi.org/10.1016/j.matpur.2017.05.001. doi: 10.1016/j.matpur.2017.05.001.  Google Scholar

[19]

B. B. Mandelbrot and J. W. Van Ness, Fractional Brownian motions, fractional noises and applications, SIAM Rev., 10 (1968), 422–437, https://doi.org/10.1137/1010093. doi: 10.1137/1010093.  Google Scholar

[20]

P. Martin, L. Rosier and P. Rouchon, Null controllability of the structurally damped wave equation with moving control, SIAM J. Control Optim., 51 (2013), 660–684, https://doi.org/10.1137/110856150. doi: 10.1137/110856150.  Google Scholar

[21]

M. I. Mustafa, On the control of the wave equation by memory-type boundary condition, Discrete Contin. Dyn. Syst., 35 (2015), 1179–1192, https://doi.org/10.3934/dcds.2015.35.1179. doi: 10.3934/dcds.2015.35.1179.  Google Scholar

[22]

L. Pandolfi, Boundary controllability and source reconstruction in a viscoelastic string under external traction, J. Math. Anal. Appl., 407 (2013), 464–479, https://doi.org/10.1016/j.jmaa.2013.05.051. doi: 10.1016/j.jmaa.2013.05.051.  Google Scholar

[23]

J. Prüss, Evolutionary Integral Equations and Applications, [2012] reprint of the 1993 edition, Modern Birkhäuser Classics, Birkhäuser/Springer Basel AG, Basel, 1993, https://doi.org/10.1007/978-3-0348-8570-6. doi: 10.1007/978-3-0348-8570-6.  Google Scholar

[24]

M. Renardy, W. J. Hrusa and J. A. Nohel, Mathematical Problems in Viscoelasticity, vol. 35 of Pitman Monographs and Surveys in Pure and Applied Mathematics, Longman Scientific & Technical, Harlow; John Wiley & Sons, Inc., New York, 1987.  Google Scholar

[25]

I. Romanov and A. Shamaev, Exact controllability of the distributed system, governed by string equation with memory, J. Dyn. Control Syst., 19 (2013), 611–623, https://doi.org/10.1007/s10883-013-9199-y. doi: 10.1007/s10883-013-9199-y.  Google Scholar

[26]

L. Rosier and B.-Y. Zhang, Unique continuation property and control for the Benjamin-Bona-Mahony equation on a periodic domain, J. Differential Equations, 254 (2013), 141–178, https://doi.org/10.1016/j.jde.2012.08.014. doi: 10.1016/j.jde.2012.08.014.  Google Scholar

[27]

W. R. Schneider, Grey noise, in Stochastic Processes, Physics and Geometry (Ascona and Locarno, 1988), World Sci. Publ., Teaneck, NJ, (1990), 676–681.  Google Scholar

[28]

R. Servadei and E. Valdinoci, Variational methods for non-local operators of elliptic type, Discrete Contin. Dyn. Syst., 33 (2013), 2105-2137.  doi: 10.3934/dcds.2013.33.2105.  Google Scholar

[29]

R. Servadei and E. Valdinoci, On the spectrum of two different fractional operators, Proc. Roy. Soc. Edinburgh Sect. A, 144 (2014), 831–855, https://doi.org/10.1017/S0308210512001783. doi: 10.1017/S0308210512001783.  Google Scholar

[30]

M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups, Birkhäuser Advanced Texts: Basler Lehrbücher, [Birkhäuser Advanced Texts: Basel Textbooks], Birkhäuser Verlag, Basel, 2009, https://doi.org/10.1007/978-3-7643-8994-9. doi: 10.1007/978-3-7643-8994-9.  Google Scholar

[31]

E. Valdinoci, From the long jump random walk to the fractional Laplacian, Bol. Soc. Esp. Mat. Apl. SeMA, 49 (2009), 33-44.   Google Scholar

[32]

M. Warma, The fractional relative capacity and the fractional Laplacian with Neumann and Robin boundary conditions on open sets, Potential Anal., 42 (2015), 499–547, https://doi.org/10.1007/s11118-014-9443-4. doi: 10.1007/s11118-014-9443-4.  Google Scholar

[33]

M. Warma, Approximate controllabilty from the exterior of space-time fractional diffusive equations, SIAM J. Control Optim., 57 (2019), 2037–2063, https://doi.org/10.1137/18M117145X. doi: 10.1137/18M117145X.  Google Scholar

[34]

M. Warma and S. Zamorano, Analysis of the controllability from the exterior of strong damping nonlocal wave equations, ESAIM: Control, Optimisation and Calculus of Variations (COCV), (2019), https://doi.org/10.1051/cocv/2019028. doi: 10.1051/cocv/2019028.  Google Scholar

[35]

R. M. Young, An Introduction to Nonharmonic Fourier Series, 1st edition, Academic Press, Inc., San Diego, CA, 2001.  Google Scholar

[36]

P. Zhuang and F. Liu, Implicit difference approximation for the time fractional diffusion equation, J. Appl. Math. Comput., 22 (2006), 87–99, https://doi.org/10.1007/BF02832039. doi: 10.1007/BF02832039.  Google Scholar

show all references

References:
[1]

U. Biccari, Internal control for non-local Schrödinger and wave equations involving the fractional Laplace operator, arXiv preprint, arXiv: 1411.7800. Google Scholar

[2]

U. Biccari and S. Micu, Null-controllability properties of the wave equation with a second order memory term, J. Differential Equations, 267 (2019), 1376-1422.  doi: 10.1016/j.jde.2019.02.009.  Google Scholar

[3]

F. W. Chaves-Silva, L. Rosier and E. Zuazua, Null controllability of a system of viscoelasticity with a moving control, J. Math. Pures Appl. (9), 101 (2014), 198–222, https://doi.org/10.1016/j.matpur.2013.05.009. doi: 10.1016/j.matpur.2013.05.009.  Google Scholar

[4]

F. W. Chaves-Silva, X. Zhang and E. Zuazua, Controllability of evolution equations with memory, SIAM J. Control Optim., 55 (2017), 2437–2459, https://doi.org/10.1137/151004239. doi: 10.1137/151004239.  Google Scholar

[5]

B. Claus and M. Warma, Realization of the fractional laplacian with nonlocal exterior conditions via forms method, arXiv preprint, arXiv: 1904.13312. Google Scholar

[6]

E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521–573, https://doi.org/10.1016/j.bulsci.2011.12.004. doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[7]

A. A. Dubkov, B. Spagnolo and V. V. Uchaikin, Lévy flight superdiffusion: an introduction, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 18 (2008), 2649–2672, https://doi.org/10.1142/S0218127408021877. doi: 10.1142/S0218127408021877.  Google Scholar

[8]

C. G. Gal and M. Warma, Fractional in time semilinear parabolic equations and applications, HAL Id: hal-01578788, hhttps://hal.archives-ouvertes.fr/hal-01578788. Google Scholar

[9]

C. G. Gal and M. Warma, Nonlocal transmission problems with fractional diffusion and boundary conditions on non-smooth interfaces, Comm. Partial Differential Equations, 42 (2017), 579–625, https://doi.org/10.1080/03605302.2017.1295060. doi: 10.1080/03605302.2017.1295060.  Google Scholar

[10]

R. Gorenflo, F. Mainardi and A. Vivoli, Continuous-time random walk and parametric subordination in fractional diffusion, Chaos Solitons Fractals, 34 (2007), 87–103, https://doi.org/10.1016/j.chaos.2007.01.052. doi: 10.1016/j.chaos.2007.01.052.  Google Scholar

[11]

J.-P. Kahane, Pseudo-périodicité et séries de Fourier lacunaires, Ann. Sci. École Norm. Sup. (3), 79 (1962), 93–150, http://www.numdam.org/item?id=ASENS_1962_3_79_2_93_0. doi: 10.24033/asens.1108.  Google Scholar

[12]

J. U. Kim, Control of a second-order integro-differential equation, SIAM J. Control Optim., 31 (1993), 101–110, https://doi.org/10.1137/0331008. doi: 10.1137/0331008.  Google Scholar

[13]

M. Kwaśnicki, Eigenvalues of the fractional Laplace operator in the interval, J. Funct. Anal., 262 (2012), 2379–2402, https://doi.org/10.1016/j.jfa.2011.12.004. doi: 10.1016/j.jfa.2011.12.004.  Google Scholar

[14]

G. Leugering, Exact controllability in viscoelasticity of fading memory type, Applicable Anal., 18 (1984), 221–243, https://doi.org/10.1080/00036818408839521. doi: 10.1080/00036818408839521.  Google Scholar

[15]

G. Leugering, Exact boundary controllability of an integro-differential equation, Appl. Math. Optim., 15 (1987), 223–250, https://doi.org/10.1007/BF01442653. doi: 10.1007/BF01442653.  Google Scholar

[16]

P. Loreti, L. Pandolfi and D. Sforza, Boundary controllability and observability of a viscoelastic string, SIAM J. Control Optim., 50 (2012), 820–844, https://doi.org/10.1137/110827740. doi: 10.1137/110827740.  Google Scholar

[17]

P. Loreti and D. Sforza, Reachability problems for a class of integro-differential equations, J. Differential Equations, 248 (2010), 1711–1755, https://doi.org/10.1016/j.jde.2009.09.016. doi: 10.1016/j.jde.2009.09.016.  Google Scholar

[18]

Q. Lü, X. Zhang and E. Zuazua, Null controllability for wave equations with memory, J. Math. Pures Appl. (9), 108 (2017), 500–531, https://doi.org/10.1016/j.matpur.2017.05.001. doi: 10.1016/j.matpur.2017.05.001.  Google Scholar

[19]

B. B. Mandelbrot and J. W. Van Ness, Fractional Brownian motions, fractional noises and applications, SIAM Rev., 10 (1968), 422–437, https://doi.org/10.1137/1010093. doi: 10.1137/1010093.  Google Scholar

[20]

P. Martin, L. Rosier and P. Rouchon, Null controllability of the structurally damped wave equation with moving control, SIAM J. Control Optim., 51 (2013), 660–684, https://doi.org/10.1137/110856150. doi: 10.1137/110856150.  Google Scholar

[21]

M. I. Mustafa, On the control of the wave equation by memory-type boundary condition, Discrete Contin. Dyn. Syst., 35 (2015), 1179–1192, https://doi.org/10.3934/dcds.2015.35.1179. doi: 10.3934/dcds.2015.35.1179.  Google Scholar

[22]

L. Pandolfi, Boundary controllability and source reconstruction in a viscoelastic string under external traction, J. Math. Anal. Appl., 407 (2013), 464–479, https://doi.org/10.1016/j.jmaa.2013.05.051. doi: 10.1016/j.jmaa.2013.05.051.  Google Scholar

[23]

J. Prüss, Evolutionary Integral Equations and Applications, [2012] reprint of the 1993 edition, Modern Birkhäuser Classics, Birkhäuser/Springer Basel AG, Basel, 1993, https://doi.org/10.1007/978-3-0348-8570-6. doi: 10.1007/978-3-0348-8570-6.  Google Scholar

[24]

M. Renardy, W. J. Hrusa and J. A. Nohel, Mathematical Problems in Viscoelasticity, vol. 35 of Pitman Monographs and Surveys in Pure and Applied Mathematics, Longman Scientific & Technical, Harlow; John Wiley & Sons, Inc., New York, 1987.  Google Scholar

[25]

I. Romanov and A. Shamaev, Exact controllability of the distributed system, governed by string equation with memory, J. Dyn. Control Syst., 19 (2013), 611–623, https://doi.org/10.1007/s10883-013-9199-y. doi: 10.1007/s10883-013-9199-y.  Google Scholar

[26]

L. Rosier and B.-Y. Zhang, Unique continuation property and control for the Benjamin-Bona-Mahony equation on a periodic domain, J. Differential Equations, 254 (2013), 141–178, https://doi.org/10.1016/j.jde.2012.08.014. doi: 10.1016/j.jde.2012.08.014.  Google Scholar

[27]

W. R. Schneider, Grey noise, in Stochastic Processes, Physics and Geometry (Ascona and Locarno, 1988), World Sci. Publ., Teaneck, NJ, (1990), 676–681.  Google Scholar

[28]

R. Servadei and E. Valdinoci, Variational methods for non-local operators of elliptic type, Discrete Contin. Dyn. Syst., 33 (2013), 2105-2137.  doi: 10.3934/dcds.2013.33.2105.  Google Scholar

[29]

R. Servadei and E. Valdinoci, On the spectrum of two different fractional operators, Proc. Roy. Soc. Edinburgh Sect. A, 144 (2014), 831–855, https://doi.org/10.1017/S0308210512001783. doi: 10.1017/S0308210512001783.  Google Scholar

[30]

M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups, Birkhäuser Advanced Texts: Basler Lehrbücher, [Birkhäuser Advanced Texts: Basel Textbooks], Birkhäuser Verlag, Basel, 2009, https://doi.org/10.1007/978-3-7643-8994-9. doi: 10.1007/978-3-7643-8994-9.  Google Scholar

[31]

E. Valdinoci, From the long jump random walk to the fractional Laplacian, Bol. Soc. Esp. Mat. Apl. SeMA, 49 (2009), 33-44.   Google Scholar

[32]

M. Warma, The fractional relative capacity and the fractional Laplacian with Neumann and Robin boundary conditions on open sets, Potential Anal., 42 (2015), 499–547, https://doi.org/10.1007/s11118-014-9443-4. doi: 10.1007/s11118-014-9443-4.  Google Scholar

[33]

M. Warma, Approximate controllabilty from the exterior of space-time fractional diffusive equations, SIAM J. Control Optim., 57 (2019), 2037–2063, https://doi.org/10.1137/18M117145X. doi: 10.1137/18M117145X.  Google Scholar

[34]

M. Warma and S. Zamorano, Analysis of the controllability from the exterior of strong damping nonlocal wave equations, ESAIM: Control, Optimisation and Calculus of Variations (COCV), (2019), https://doi.org/10.1051/cocv/2019028. doi: 10.1051/cocv/2019028.  Google Scholar

[35]

R. M. Young, An Introduction to Nonharmonic Fourier Series, 1st edition, Academic Press, Inc., San Diego, CA, 2001.  Google Scholar

[36]

P. Zhuang and F. Liu, Implicit difference approximation for the time fractional diffusion equation, J. Appl. Math. Comput., 22 (2006), 87–99, https://doi.org/10.1007/BF02832039. doi: 10.1007/BF02832039.  Google Scholar

[1]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[2]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[3]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[4]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

[5]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[6]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[7]

Xuefeng Zhang, Yingbo Zhang. Fault-tolerant control against actuator failures for uncertain singular fractional order systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 1-12. doi: 10.3934/naco.2020011

[8]

S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020435

[9]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[10]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[11]

Barbora Benešová, Miroslav Frost, Lukáš Kadeřávek, Tomáš Roubíček, Petr Sedlák. An experimentally-fitted thermodynamical constitutive model for polycrystalline shape memory alloys. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020459

[12]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[13]

Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHum approach. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020055

[14]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020076

[15]

Mehdi Bastani, Davod Khojasteh Salkuyeh. On the GSOR iteration method for image restoration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 27-43. doi: 10.3934/naco.2020013

[16]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[17]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[18]

Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020

[19]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

[20]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

2019 Impact Factor: 0.953

Metrics

  • PDF downloads (197)
  • HTML views (445)
  • Cited by (0)

Other articles
by authors

[Back to Top]