June  2020, 9(2): 431-446. doi: 10.3934/eect.2020012

Existence of mass-conserving weak solutions to the singular coagulation equation with multiple fragmentation

1. 

Department of Mathematics, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India

2. 

Tata Institute of Fundamental Research, Centre for Applicable Mathematics, Bangalore-560065, Karnataka, India

Received  March 2019 Revised  April 2019 Published  August 2019

In this paper we study the continuous coagulation and multiple fragmentation equation for the mean-field description of a system of particles taking into account the combined effect of the coagulation and the fragmentation processes in which a system of particles growing by successive mergers to form a bigger one and a larger particle splits into a finite number of smaller pieces. We demonstrate the global existence of mass-conserving weak solutions for a wide class of coagulation rate, selection rate and breakage function. Here, both the breakage function and the coagulation rate may have algebraic singularity on both the coordinate axes. The proof of the existence result is based on a weak $ L^1 $ compactness method for two different suitable approximations to the original problem, namely, the conservative and non-conservative approximations. Moreover, the mass-conservation property of solutions is established for both approximations.

Citation: Prasanta Kumar Barik. Existence of mass-conserving weak solutions to the singular coagulation equation with multiple fragmentation. Evolution Equations & Control Theory, 2020, 9 (2) : 431-446. doi: 10.3934/eect.2020012
References:
[1]

D. J. Aldous, Deterministic and stochastic models for coalescence (aggregation and coagulation): A review of the mean-field theory for probabilists, Bernouli, 5 (1999), 3-48.  doi: 10.2307/3318611.  Google Scholar

[2]

P. K. Barik and A. K. Giri, A note on mass-conserving solutions to the coagulation-fragmentation equation by using non-conservative approximation, Kinet. Relat. Models, 11 (2018), 1125-1138.  doi: 10.3934/krm.2018043.  Google Scholar

[3]

P. K. Barik, A. K. Giri and P. Laurençot, Mass-conserving solutions to the Smoluchowski coagulation equation with singular kernel, Proc. Royal Soc. Edinburgh Sec. A: Math., (2019), 1–21. doi: 10.1017/prm.2018.158.  Google Scholar

[4]

J.-P. Bourgade and F. Filbet, Convergence of a finite volume scheme for coagulation-fragmentation equations, Math. Comp., 77 (2008), 851-882.  doi: 10.1090/S0025-5718-07-02054-6.  Google Scholar

[5]

C. C. Camejo and G. Warnecke, The singular kernel coagulation equation with multifragmentation, Math. Methods Appl. Sci., 38 (2015), 2953-2973.  doi: 10.1002/mma.3272.  Google Scholar

[6]

J. M. C. Clark and V. Katsouros, Stably coalescent stochastic froths, Adv. Appl. Probab., 31 (1999), 199-219.  doi: 10.1239/aap/1029954273.  Google Scholar

[7]

P. B. Dubovskiǐ and I. W. Stewart, Existence, uniqueness and mass Conservation for the coagulation-fragmentation equation, Math. Methods Appl. Sci., 19 (1996), 571-591.  doi: 10.1002/(SICI)1099-1476(19960510)19:7<571::AID-MMA790>3.0.CO;2-Q.  Google Scholar

[8]

M. EscobedoP. LaurençotS. Mischler and B. Perthame, Gelation and mass conservation in coagulation-fragmentation models, J. Diff. Eqs., 195 (2003), 143-174.  doi: 10.1016/S0022-0396(03)00134-7.  Google Scholar

[9]

F. Filbet and P. Laurençot, Mass-conserving solutions and non-conservative approximation to the Smoluchowski coagulation equation, Archiv der Mathematik, 83 (2004), 558-567.  doi: 10.1007/s00013-004-1060-9.  Google Scholar

[10]

F. Filbet and P. Laurençot, Numerical simulation of the Smoluchowski coagulation equation, SIAM J. Sci. Comput., 25 (2004), 2004-2028.  doi: 10.1137/S1064827503429132.  Google Scholar

[11]

A. K. Giri, On the uniqueness for coagulation and multiple fragmentation equation, Kinet. Relat. Models, 6 (2013), 589-599.  doi: 10.3934/krm.2013.6.589.  Google Scholar

[12]

A. K. GiriJ. Kumar and G. Warnecke, The continuous coagulation equation with multiple fragmentation, J. Math. Anal. Appl., 374 (2011), 71-87.  doi: 10.1016/j.jmaa.2010.08.037.  Google Scholar

[13]

A. K. GiriP. Laurençot and G. Warnecke, Weak solutions to the continuous coagulation equation with multiple fragmentation, Nonlinear Anal., 75 (2012), 2199-2208.  doi: 10.1016/j.na.2011.10.021.  Google Scholar

[14]

P. C. Kapur, Kinetics of granulation by non-random coalescence mechanism, Chem. Eng. Sci., 27 (1972), 1863-1869.  doi: 10.1016/0009-2509(72)85048-6.  Google Scholar

[15]

P. Laurençot, Mass-conserving solutions to coagulation-fragmentation equations with non-integrable fragment distribution function, Quart. Appl. Math., 76 (2018), 767-785.  doi: 10.1090/qam/1511.  Google Scholar

[16]

P. Laurençot, Uniqueness of mass-conserving self-similar solutions to Smoluchowski's coagulation equation with inverse power law kernels, J. Statist. Phys., 171 (2018), 484-492.  doi: 10.1007/s10955-018-2018-9.  Google Scholar

[17]

P. Laurençot, Weak compactness techniques and coagulation equations, Evolutionary Equations with Applications in Natural Sciences, J. Banasiak & M. Mokhtar-Kharroubi (eds.), Lecture Notes Math., 2126 (2015), 199–253. doi: 10.1007/978-3-319-11322-7_5.  Google Scholar

[18]

P. Laurençot and S. Mischler, From the discrete to the continuous coagulation-fragmentation equations, Proc. Royal Soc. Edinburgh Sect. A, 132 (2002), 1219-1248.  doi: 10.1017/S0308210502000598.  Google Scholar

[19]

F. Leyvraz and H. R. Tschudi, Singularities in the kinetics of coagulation processes, J. Phys. A, 14 (1981), 3389-3405.  doi: 10.1088/0305-4470/14/12/030.  Google Scholar

[20]

D. J. McLaughlinW. Lamb and A. C. McBride, An existence and uniqueness result for a coagulation and multiple-fragmentation equation, SIAM J. Math. Anal., 28 (1997), 1173-1190.  doi: 10.1137/S0036141095291713.  Google Scholar

[21]

Z. A. Melzak, A scalar transport equation, Trans. Amer. Math. Soc., 85 (1957), 547-560.  doi: 10.1090/S0002-9947-1957-0087880-6.  Google Scholar

[22]

J. R. Norris, Smoluchowski's coagulation equation: Uniqueness, non-uniqueness and hydrodynamic limit for the stochastic coalescent, Ann. Appl. Probab., 9 (1999), 78-109.  doi: 10.1214/aoap/1029962598.  Google Scholar

[23]

I. W. Stewart, A global existence theorem for the general coagulation-fragmentation equation with unbounded kernels, Math. Methods Appl. Sci., 11 (1989), 627-648.  doi: 10.1002/mma.1670110505.  Google Scholar

[24]

I. I. Vrabie, Compactness Methods for Nonlinear Evolutions, 2nd edition, Pitman Monogr. Surveys Pure Appl. Math., 75, Longman, 1995.  Google Scholar

show all references

References:
[1]

D. J. Aldous, Deterministic and stochastic models for coalescence (aggregation and coagulation): A review of the mean-field theory for probabilists, Bernouli, 5 (1999), 3-48.  doi: 10.2307/3318611.  Google Scholar

[2]

P. K. Barik and A. K. Giri, A note on mass-conserving solutions to the coagulation-fragmentation equation by using non-conservative approximation, Kinet. Relat. Models, 11 (2018), 1125-1138.  doi: 10.3934/krm.2018043.  Google Scholar

[3]

P. K. Barik, A. K. Giri and P. Laurençot, Mass-conserving solutions to the Smoluchowski coagulation equation with singular kernel, Proc. Royal Soc. Edinburgh Sec. A: Math., (2019), 1–21. doi: 10.1017/prm.2018.158.  Google Scholar

[4]

J.-P. Bourgade and F. Filbet, Convergence of a finite volume scheme for coagulation-fragmentation equations, Math. Comp., 77 (2008), 851-882.  doi: 10.1090/S0025-5718-07-02054-6.  Google Scholar

[5]

C. C. Camejo and G. Warnecke, The singular kernel coagulation equation with multifragmentation, Math. Methods Appl. Sci., 38 (2015), 2953-2973.  doi: 10.1002/mma.3272.  Google Scholar

[6]

J. M. C. Clark and V. Katsouros, Stably coalescent stochastic froths, Adv. Appl. Probab., 31 (1999), 199-219.  doi: 10.1239/aap/1029954273.  Google Scholar

[7]

P. B. Dubovskiǐ and I. W. Stewart, Existence, uniqueness and mass Conservation for the coagulation-fragmentation equation, Math. Methods Appl. Sci., 19 (1996), 571-591.  doi: 10.1002/(SICI)1099-1476(19960510)19:7<571::AID-MMA790>3.0.CO;2-Q.  Google Scholar

[8]

M. EscobedoP. LaurençotS. Mischler and B. Perthame, Gelation and mass conservation in coagulation-fragmentation models, J. Diff. Eqs., 195 (2003), 143-174.  doi: 10.1016/S0022-0396(03)00134-7.  Google Scholar

[9]

F. Filbet and P. Laurençot, Mass-conserving solutions and non-conservative approximation to the Smoluchowski coagulation equation, Archiv der Mathematik, 83 (2004), 558-567.  doi: 10.1007/s00013-004-1060-9.  Google Scholar

[10]

F. Filbet and P. Laurençot, Numerical simulation of the Smoluchowski coagulation equation, SIAM J. Sci. Comput., 25 (2004), 2004-2028.  doi: 10.1137/S1064827503429132.  Google Scholar

[11]

A. K. Giri, On the uniqueness for coagulation and multiple fragmentation equation, Kinet. Relat. Models, 6 (2013), 589-599.  doi: 10.3934/krm.2013.6.589.  Google Scholar

[12]

A. K. GiriJ. Kumar and G. Warnecke, The continuous coagulation equation with multiple fragmentation, J. Math. Anal. Appl., 374 (2011), 71-87.  doi: 10.1016/j.jmaa.2010.08.037.  Google Scholar

[13]

A. K. GiriP. Laurençot and G. Warnecke, Weak solutions to the continuous coagulation equation with multiple fragmentation, Nonlinear Anal., 75 (2012), 2199-2208.  doi: 10.1016/j.na.2011.10.021.  Google Scholar

[14]

P. C. Kapur, Kinetics of granulation by non-random coalescence mechanism, Chem. Eng. Sci., 27 (1972), 1863-1869.  doi: 10.1016/0009-2509(72)85048-6.  Google Scholar

[15]

P. Laurençot, Mass-conserving solutions to coagulation-fragmentation equations with non-integrable fragment distribution function, Quart. Appl. Math., 76 (2018), 767-785.  doi: 10.1090/qam/1511.  Google Scholar

[16]

P. Laurençot, Uniqueness of mass-conserving self-similar solutions to Smoluchowski's coagulation equation with inverse power law kernels, J. Statist. Phys., 171 (2018), 484-492.  doi: 10.1007/s10955-018-2018-9.  Google Scholar

[17]

P. Laurençot, Weak compactness techniques and coagulation equations, Evolutionary Equations with Applications in Natural Sciences, J. Banasiak & M. Mokhtar-Kharroubi (eds.), Lecture Notes Math., 2126 (2015), 199–253. doi: 10.1007/978-3-319-11322-7_5.  Google Scholar

[18]

P. Laurençot and S. Mischler, From the discrete to the continuous coagulation-fragmentation equations, Proc. Royal Soc. Edinburgh Sect. A, 132 (2002), 1219-1248.  doi: 10.1017/S0308210502000598.  Google Scholar

[19]

F. Leyvraz and H. R. Tschudi, Singularities in the kinetics of coagulation processes, J. Phys. A, 14 (1981), 3389-3405.  doi: 10.1088/0305-4470/14/12/030.  Google Scholar

[20]

D. J. McLaughlinW. Lamb and A. C. McBride, An existence and uniqueness result for a coagulation and multiple-fragmentation equation, SIAM J. Math. Anal., 28 (1997), 1173-1190.  doi: 10.1137/S0036141095291713.  Google Scholar

[21]

Z. A. Melzak, A scalar transport equation, Trans. Amer. Math. Soc., 85 (1957), 547-560.  doi: 10.1090/S0002-9947-1957-0087880-6.  Google Scholar

[22]

J. R. Norris, Smoluchowski's coagulation equation: Uniqueness, non-uniqueness and hydrodynamic limit for the stochastic coalescent, Ann. Appl. Probab., 9 (1999), 78-109.  doi: 10.1214/aoap/1029962598.  Google Scholar

[23]

I. W. Stewart, A global existence theorem for the general coagulation-fragmentation equation with unbounded kernels, Math. Methods Appl. Sci., 11 (1989), 627-648.  doi: 10.1002/mma.1670110505.  Google Scholar

[24]

I. I. Vrabie, Compactness Methods for Nonlinear Evolutions, 2nd edition, Pitman Monogr. Surveys Pure Appl. Math., 75, Longman, 1995.  Google Scholar

[1]

Helmut Abels, Johannes Kampmann. Existence of weak solutions for a sharp interface model for phase separation on biological membranes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 331-351. doi: 10.3934/dcdss.2020325

[2]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[3]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[4]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[5]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[6]

Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366

[7]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[8]

Sihem Guerarra. Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 75-86. doi: 10.3934/naco.2020016

[9]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[10]

Martin Kalousek, Joshua Kortum, Anja Schlömerkemper. Mathematical analysis of weak and strong solutions to an evolutionary model for magnetoviscoelasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 17-39. doi: 10.3934/dcdss.2020331

[11]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[12]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[13]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[14]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, 2021, 20 (1) : 319-338. doi: 10.3934/cpaa.2020268

[15]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[16]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[17]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[18]

Dorothee Knees, Chiara Zanini. Existence of parameterized BV-solutions for rate-independent systems with discontinuous loads. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 121-149. doi: 10.3934/dcdss.2020332

[19]

Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326

[20]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

2019 Impact Factor: 0.953

Metrics

  • PDF downloads (85)
  • HTML views (416)
  • Cited by (0)

Other articles
by authors

[Back to Top]