March  2020, 9(1): 1-25. doi: 10.3934/eect.2020014

Exact boundary observability and controllability of the wave equation in an interval with two moving endpoints

Laboratory of Functional Analysis and Geometry of Spaces, Faculty of Mathematics and Computer Sciences, University of M'sila, 28000, Algeria

Received  November 2017 Revised  May 2018 Published  October 2019

Fund Project: The author is supported by the Algerian Ministry of Higher Education and Scientific Research, under a PRFU Project No. C00L03UN280120180007

We study the wave equation in an interval with two linearly moving endpoints. We give the exact solution by a series formula, then we show that the energy of the solution decays at the rate $ 1/t $. We also establish observability results, at one or at both endpoints, in a sharp time. Moreover, using the Hilbert uniqueness method, we derive exact boundary controllability results.

Citation: Abdelmouhcene Sengouga. Exact boundary observability and controllability of the wave equation in an interval with two moving endpoints. Evolution Equations & Control Theory, 2020, 9 (1) : 1-25. doi: 10.3934/eect.2020014
References:
[1]

N. L. Balazs, On the solution of the wave equation with moving boundaries, J. Math. Anal. Appl., 3 (1961), 472-484.  doi: 10.1016/0022-247X(61)90071-3.  Google Scholar

[2]

C. Bardos and G. Chen, Control and stabilization for the wave equation. Ⅲ: Domain with moving boundary, SIAM J. Control Optim., 19 (1981), 123-138.  doi: 10.1137/0319010.  Google Scholar

[3]

G. Birkhoff and G.-C. Rota, Ordinary Differential Equations, 4$^{th}$ edition, John Wiley & Sons, Inc., New York, 1989.  Google Scholar

[4]

J. Cooper and C. Bardos, A nonlinear wave equation in a time dependent domain, J. Math. Anal. Appl., 42 (1973), 29-60.  doi: 10.1016/0022-247X(73)90120-0.  Google Scholar

[5]

L. Z. CuiX. Liu and H. Gao, Exact controllability for a one-dimensional wave equation in non-cylindrical domains, J. Math. Anal. Appl., 402 (2013), 612-625.  doi: 10.1016/j.jmaa.2013.01.062.  Google Scholar

[6]

V. V. DodonovA. B. Klimov and D. E. Nikonov, Quantum phenomena in resonators with moving walls, J. Math. Phys., 34 (1993), 2742-2756.  doi: 10.1063/1.530093.  Google Scholar

[7]

E. Knobloch and R. Krechetnikov, Problems on time-varying domains: Formulation, dynamics, and challenges, Acta Appl. Math., 137 (2015), 123-157.  doi: 10.1007/s10440-014-9993-x.  Google Scholar

[8]

V. Komornik, Exact Controllability and Stabilization. The Multiplier Method, RAM: Research in Applied Mathematics, Masson, Paris, John Wiley & Sons, Ltd., Chichester, 1994.  Google Scholar

[9]

V. Komornik and P. Loreti, Fourier Series in Control Theory, Springer Monographs in Mathematics, Springer-Verlag, New York, 2005. doi: 10.1007/b139040.  Google Scholar

[10]

J.-L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires, Dunod-Gautier Villars, Paris, 1969.  Google Scholar

[11]

J.-L. Lions, Contrôlabilité Exacte, Perturbations et Stabilisation de Systemes Distribués. Tome 1. Contrôlabilité Exacte, Recherches en Mathématiques Appliquées, 8. Masson, Paris, 1988.  Google Scholar

[12]

L. Q. LuS. J. LiG. Chen and P. F. Yao, Control and stabilization for the wave equation with variable coefficients in domains with moving boundary, Systems & Control Lett., 80 (2015), 30-41.  doi: 10.1016/j.sysconle.2015.04.003.  Google Scholar

[13]

L. A. MedeirosJ. Limaco and S. B. Menezes, Vibrations of elastic strings: Mathematical aspects, part two, J. Comput. Anal. Appl., 4 (2002), 211-263.  doi: 10.1023/A:1013151525487.  Google Scholar

[14]

M. Milla Miranda, Exact controllability for the wave equation in domains with variable boundary, Rev. Mat. Complut. Madrid, 9 (1996), 435-457.  doi: 10.5209/rev_rema.1996.v9.n2.17595.  Google Scholar

[15]

G. T. Moore, Quantum theory of electromagnetic field in a variable-length one-dimensional cavity, J. Math. Phys., 11 (1970), 2679-2691.  doi: 10.1063/1.1665432.  Google Scholar

[16]

M. A. Pinsky, Introduction to Fourier Analysis and Wavelets, Graduate Studies in Mathematics, 102. American Mathematical Society, Providence, RI, 2009. doi: 10.1090/gsm/102.  Google Scholar

[17]

D. L. Russell, Controllability and stabilizability theory for linear partial differential equations: Recent progress and open questions, SIAM Rev., 20 (1978), 639-739.  doi: 10.1137/1020095.  Google Scholar

[18]

A. Sengouga, Observability and controllability of the 1-D wave equation in domains with moving boundary, Acta Appli. Math., 157 (2018), 117-128.  doi: 10.1007/s10440-018-0166-1.  Google Scholar

[19]

A. Sengouga, Observability of the 1-D wave equation with mixed boundary conditions in a non-cylindrical domain, Mediterr. J. Math., 15 (2018), Art. 62, 22 pp. doi: 10.1007/s00009-018-1107-y.  Google Scholar

[20]

H. C. Sun, H. F. Li and L. Q. Lu, Exact controllability for a string equation in domains with moving boundary in one dimension, Electron. J. Diff. Equations, 2015 (2015), 7 pp.  Google Scholar

[21]

P. K. C. Wang, Stabilization and control of distributed systems with time-dependent spatial domains, J. Optim. Theory Appl., 65 (1990), 331-362.  doi: 10.1007/BF01102351.  Google Scholar

[22]

E. Zuazua, Propagation, observation, and control of waves approximated by finite difference methods, SIAM Rev., 47 (2005), 197-243.  doi: 10.1137/S0036144503432862.  Google Scholar

show all references

References:
[1]

N. L. Balazs, On the solution of the wave equation with moving boundaries, J. Math. Anal. Appl., 3 (1961), 472-484.  doi: 10.1016/0022-247X(61)90071-3.  Google Scholar

[2]

C. Bardos and G. Chen, Control and stabilization for the wave equation. Ⅲ: Domain with moving boundary, SIAM J. Control Optim., 19 (1981), 123-138.  doi: 10.1137/0319010.  Google Scholar

[3]

G. Birkhoff and G.-C. Rota, Ordinary Differential Equations, 4$^{th}$ edition, John Wiley & Sons, Inc., New York, 1989.  Google Scholar

[4]

J. Cooper and C. Bardos, A nonlinear wave equation in a time dependent domain, J. Math. Anal. Appl., 42 (1973), 29-60.  doi: 10.1016/0022-247X(73)90120-0.  Google Scholar

[5]

L. Z. CuiX. Liu and H. Gao, Exact controllability for a one-dimensional wave equation in non-cylindrical domains, J. Math. Anal. Appl., 402 (2013), 612-625.  doi: 10.1016/j.jmaa.2013.01.062.  Google Scholar

[6]

V. V. DodonovA. B. Klimov and D. E. Nikonov, Quantum phenomena in resonators with moving walls, J. Math. Phys., 34 (1993), 2742-2756.  doi: 10.1063/1.530093.  Google Scholar

[7]

E. Knobloch and R. Krechetnikov, Problems on time-varying domains: Formulation, dynamics, and challenges, Acta Appl. Math., 137 (2015), 123-157.  doi: 10.1007/s10440-014-9993-x.  Google Scholar

[8]

V. Komornik, Exact Controllability and Stabilization. The Multiplier Method, RAM: Research in Applied Mathematics, Masson, Paris, John Wiley & Sons, Ltd., Chichester, 1994.  Google Scholar

[9]

V. Komornik and P. Loreti, Fourier Series in Control Theory, Springer Monographs in Mathematics, Springer-Verlag, New York, 2005. doi: 10.1007/b139040.  Google Scholar

[10]

J.-L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires, Dunod-Gautier Villars, Paris, 1969.  Google Scholar

[11]

J.-L. Lions, Contrôlabilité Exacte, Perturbations et Stabilisation de Systemes Distribués. Tome 1. Contrôlabilité Exacte, Recherches en Mathématiques Appliquées, 8. Masson, Paris, 1988.  Google Scholar

[12]

L. Q. LuS. J. LiG. Chen and P. F. Yao, Control and stabilization for the wave equation with variable coefficients in domains with moving boundary, Systems & Control Lett., 80 (2015), 30-41.  doi: 10.1016/j.sysconle.2015.04.003.  Google Scholar

[13]

L. A. MedeirosJ. Limaco and S. B. Menezes, Vibrations of elastic strings: Mathematical aspects, part two, J. Comput. Anal. Appl., 4 (2002), 211-263.  doi: 10.1023/A:1013151525487.  Google Scholar

[14]

M. Milla Miranda, Exact controllability for the wave equation in domains with variable boundary, Rev. Mat. Complut. Madrid, 9 (1996), 435-457.  doi: 10.5209/rev_rema.1996.v9.n2.17595.  Google Scholar

[15]

G. T. Moore, Quantum theory of electromagnetic field in a variable-length one-dimensional cavity, J. Math. Phys., 11 (1970), 2679-2691.  doi: 10.1063/1.1665432.  Google Scholar

[16]

M. A. Pinsky, Introduction to Fourier Analysis and Wavelets, Graduate Studies in Mathematics, 102. American Mathematical Society, Providence, RI, 2009. doi: 10.1090/gsm/102.  Google Scholar

[17]

D. L. Russell, Controllability and stabilizability theory for linear partial differential equations: Recent progress and open questions, SIAM Rev., 20 (1978), 639-739.  doi: 10.1137/1020095.  Google Scholar

[18]

A. Sengouga, Observability and controllability of the 1-D wave equation in domains with moving boundary, Acta Appli. Math., 157 (2018), 117-128.  doi: 10.1007/s10440-018-0166-1.  Google Scholar

[19]

A. Sengouga, Observability of the 1-D wave equation with mixed boundary conditions in a non-cylindrical domain, Mediterr. J. Math., 15 (2018), Art. 62, 22 pp. doi: 10.1007/s00009-018-1107-y.  Google Scholar

[20]

H. C. Sun, H. F. Li and L. Q. Lu, Exact controllability for a string equation in domains with moving boundary in one dimension, Electron. J. Diff. Equations, 2015 (2015), 7 pp.  Google Scholar

[21]

P. K. C. Wang, Stabilization and control of distributed systems with time-dependent spatial domains, J. Optim. Theory Appl., 65 (1990), 331-362.  doi: 10.1007/BF01102351.  Google Scholar

[22]

E. Zuazua, Propagation, observation, and control of waves approximated by finite difference methods, SIAM Rev., 47 (2005), 197-243.  doi: 10.1137/S0036144503432862.  Google Scholar

Figure 1.  Extension of an initial data $ \phi ^{0} $ when $ v _{1}<v _{2} $
Figure 2.  Propagation of a wave with a small support near an endpoint $ (v _{2}<v _{1}) $
Figure 3.  Propagation of small disturbances with supports near one or two ends $ (v _{1}<v _{2}) $
[1]

Jorge Ferreira, Mauro De Lima Santos. Asymptotic behaviour for wave equations with memory in a noncylindrical domains. Communications on Pure & Applied Analysis, 2003, 2 (4) : 511-520. doi: 10.3934/cpaa.2003.2.511

[2]

Arnaud Heibig, Mohand Moussaoui. Exact controllability of the wave equation for domains with slits and for mixed boundary conditions. Discrete & Continuous Dynamical Systems - A, 1996, 2 (3) : 367-386. doi: 10.3934/dcds.1996.2.367

[3]

Imen Benabbas, Djamel Eddine Teniou. Observability of wave equation with Ventcel dynamic condition. Evolution Equations & Control Theory, 2018, 7 (4) : 545-570. doi: 10.3934/eect.2018026

[4]

G. Gentile, V. Mastropietro. Convergence of Lindstedt series for the non linear wave equation. Communications on Pure & Applied Analysis, 2004, 3 (3) : 509-514. doi: 10.3934/cpaa.2004.3.509

[5]

Georgi Grahovski, Rossen Ivanov. Generalised Fourier transform and perturbations to soliton equations. Discrete & Continuous Dynamical Systems - B, 2009, 12 (3) : 579-595. doi: 10.3934/dcdsb.2009.12.579

[6]

Irena Lasiecka, Roberto Triggiani. Global exact controllability of semilinear wave equations by a double compactness/uniqueness argument. Conference Publications, 2005, 2005 (Special) : 556-565. doi: 10.3934/proc.2005.2005.556

[7]

Bopeng Rao, Laila Toufayli, Ali Wehbe. Stability and controllability of a wave equation with dynamical boundary control. Mathematical Control & Related Fields, 2015, 5 (2) : 305-320. doi: 10.3934/mcrf.2015.5.305

[8]

Mohamed Ouzahra. Controllability of the semilinear wave equation governed by a multiplicative control. Evolution Equations & Control Theory, 2019, 8 (4) : 669-686. doi: 10.3934/eect.2019039

[9]

Axel Grünrock, Sebastian Herr. The Fourier restriction norm method for the Zakharov-Kuznetsov equation. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 2061-2068. doi: 10.3934/dcds.2014.34.2061

[10]

Chun Zong, Gen Qi Xu. Observability and controllability analysis of blood flow network. Mathematical Control & Related Fields, 2014, 4 (4) : 521-554. doi: 10.3934/mcrf.2014.4.521

[11]

Lingyang Liu, Xu Liu. Controllability and observability of some coupled stochastic parabolic systems. Mathematical Control & Related Fields, 2018, 8 (3&4) : 829-854. doi: 10.3934/mcrf.2018037

[12]

Paola Loreti, Daniela Sforza. Inverse observability inequalities for integrodifferential equations in square domains. Evolution Equations & Control Theory, 2018, 7 (1) : 61-77. doi: 10.3934/eect.2018004

[13]

Xu Zhang, Chuang Zheng, Enrique Zuazua. Time discrete wave equations: Boundary observability and control. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 571-604. doi: 10.3934/dcds.2009.23.571

[14]

Michel Potier-Ferry, Foudil Mohri, Fan Xu, Noureddine Damil, Bouazza Braikat, Khadija Mhada, Heng Hu, Qun Huang, Saeid Nezamabadi. Cellular instabilities analyzed by multi-scale Fourier series: A review. Discrete & Continuous Dynamical Systems - S, 2016, 9 (2) : 585-597. doi: 10.3934/dcdss.2016013

[15]

Patrick Martinez, Judith Vancostenoble. Exact controllability in "arbitrarily short time" of the semilinear wave equation. Discrete & Continuous Dynamical Systems - A, 2003, 9 (4) : 901-924. doi: 10.3934/dcds.2003.9.901

[16]

Umberto Biccari, Mahamadi Warma. Null-controllability properties of a fractional wave equation with a memory term. Evolution Equations & Control Theory, 2019, 0 (0) : 0-0. doi: 10.3934/eect.2020011

[17]

M. A. Christou, C. I. Christov. Fourier-Galerkin method for localized solutions of the Sixth-Order Generalized Boussinesq Equation. Conference Publications, 2001, 2001 (Special) : 121-130. doi: 10.3934/proc.2001.2001.121

[18]

Michael Renardy. A backward uniqueness result for the wave equation with absorbing boundary conditions. Evolution Equations & Control Theory, 2015, 4 (3) : 347-353. doi: 10.3934/eect.2015.4.347

[19]

Yannick Privat, Emmanuel Trélat, Enrique Zuazua. Complexity and regularity of maximal energy domains for the wave equation with fixed initial data. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 6133-6153. doi: 10.3934/dcds.2015.35.6133

[20]

Patrizia Donato, Florian Gaveau. Homogenization and correctors for the wave equation in non periodic perforated domains. Networks & Heterogeneous Media, 2008, 3 (1) : 97-124. doi: 10.3934/nhm.2008.3.97

2018 Impact Factor: 1.048

Metrics

  • PDF downloads (73)
  • HTML views (61)
  • Cited by (0)

Other articles
by authors

[Back to Top]