We study the wave equation in an interval with two linearly moving endpoints. We give the exact solution by a series formula, then we show that the energy of the solution decays at the rate $ 1/t $. We also establish observability results, at one or at both endpoints, in a sharp time. Moreover, using the Hilbert uniqueness method, we derive exact boundary controllability results.
Citation: |
[1] |
N. L. Balazs, On the solution of the wave equation with moving boundaries, J. Math. Anal. Appl., 3 (1961), 472-484.
doi: 10.1016/0022-247X(61)90071-3.![]() ![]() |
[2] |
C. Bardos and G. Chen, Control and stabilization for the wave equation. Ⅲ: Domain with moving boundary, SIAM J. Control Optim., 19 (1981), 123-138.
doi: 10.1137/0319010.![]() ![]() ![]() |
[3] |
G. Birkhoff and G.-C. Rota, Ordinary Differential Equations, 4$^{th}$ edition, John Wiley & Sons, Inc., New York, 1989.
![]() ![]() |
[4] |
J. Cooper and C. Bardos, A nonlinear wave equation in a time dependent domain, J. Math. Anal. Appl., 42 (1973), 29-60.
doi: 10.1016/0022-247X(73)90120-0.![]() ![]() ![]() |
[5] |
L. Z. Cui, X. Liu and H. Gao, Exact controllability for a one-dimensional wave equation in non-cylindrical domains, J. Math. Anal. Appl., 402 (2013), 612-625.
doi: 10.1016/j.jmaa.2013.01.062.![]() ![]() ![]() |
[6] |
V. V. Dodonov, A. B. Klimov and D. E. Nikonov, Quantum phenomena in resonators with moving walls, J. Math. Phys., 34 (1993), 2742-2756.
doi: 10.1063/1.530093.![]() ![]() ![]() |
[7] |
E. Knobloch and R. Krechetnikov, Problems on time-varying domains: Formulation, dynamics, and challenges, Acta Appl. Math., 137 (2015), 123-157.
doi: 10.1007/s10440-014-9993-x.![]() ![]() ![]() |
[8] |
V. Komornik, Exact Controllability and Stabilization. The Multiplier Method, RAM: Research in Applied Mathematics, Masson, Paris, John Wiley & Sons, Ltd., Chichester, 1994.
![]() ![]() |
[9] |
V. Komornik and P. Loreti, Fourier Series in Control Theory, Springer Monographs in Mathematics, Springer-Verlag, New York, 2005.
doi: 10.1007/b139040.![]() ![]() ![]() |
[10] |
J.-L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires, Dunod-Gautier Villars, Paris, 1969.
![]() ![]() |
[11] |
J.-L. Lions, Contrôlabilité Exacte, Perturbations et Stabilisation de Systemes Distribués. Tome 1. Contrôlabilité Exacte, Recherches en Mathématiques Appliquées, 8. Masson, Paris, 1988.
![]() ![]() |
[12] |
L. Q. Lu, S. J. Li, G. Chen and P. F. Yao, Control and stabilization for the wave equation with variable coefficients in domains with moving boundary, Systems & Control Lett., 80 (2015), 30-41.
doi: 10.1016/j.sysconle.2015.04.003.![]() ![]() ![]() |
[13] |
L. A. Medeiros, J. Limaco and S. B. Menezes, Vibrations of elastic strings: Mathematical aspects, part two, J. Comput. Anal. Appl., 4 (2002), 211-263.
doi: 10.1023/A:1013151525487.![]() ![]() ![]() |
[14] |
M. Milla Miranda, Exact controllability for the wave equation in domains with variable boundary, Rev. Mat. Complut. Madrid, 9 (1996), 435-457.
doi: 10.5209/rev_rema.1996.v9.n2.17595.![]() ![]() ![]() |
[15] |
G. T. Moore, Quantum theory of electromagnetic field in a variable-length one-dimensional cavity, J. Math. Phys., 11 (1970), 2679-2691.
doi: 10.1063/1.1665432.![]() ![]() |
[16] |
M. A. Pinsky, Introduction to Fourier Analysis and Wavelets, Graduate Studies in Mathematics, 102. American Mathematical Society, Providence, RI, 2009.
doi: 10.1090/gsm/102.![]() ![]() ![]() |
[17] |
D. L. Russell, Controllability and stabilizability theory for linear partial differential equations: Recent progress and open questions, SIAM Rev., 20 (1978), 639-739.
doi: 10.1137/1020095.![]() ![]() ![]() |
[18] |
A. Sengouga, Observability and controllability of the 1-D wave equation in domains with moving boundary, Acta Appli. Math., 157 (2018), 117-128.
doi: 10.1007/s10440-018-0166-1.![]() ![]() ![]() |
[19] |
A. Sengouga, Observability of the 1-D wave equation with mixed boundary conditions in a non-cylindrical domain, Mediterr. J. Math., 15 (2018), Art. 62, 22 pp.
doi: 10.1007/s00009-018-1107-y.![]() ![]() ![]() |
[20] |
H. C. Sun, H. F. Li and L. Q. Lu, Exact controllability for a string equation in domains with moving boundary in one dimension, Electron. J. Diff. Equations, 2015 (2015), 7 pp.
![]() ![]() |
[21] |
P. K. C. Wang, Stabilization and control of distributed systems with time-dependent spatial domains, J. Optim. Theory Appl., 65 (1990), 331-362.
doi: 10.1007/BF01102351.![]() ![]() ![]() |
[22] |
E. Zuazua, Propagation, observation, and control of waves approximated by finite difference methods, SIAM Rev., 47 (2005), 197-243.
doi: 10.1137/S0036144503432862.![]() ![]() ![]() |
Extension of an initial data
Propagation of a wave with a small support near an endpoint
Propagation of small disturbances with supports near one or two ends