• Previous Article
    Uniform exponential stability of a fluid-plate interaction model due to thermal effects
  • EECT Home
  • This Issue
  • Next Article
    Exact boundary observability and controllability of the wave equation in an interval with two moving endpoints
March  2020, 9(1): 27-38. doi: 10.3934/eect.2020015

Almost mixed semi-continuous perturbation of Moreau's sweeping process

LMPA Laboratory, Department of Mathematics, Jijel University, 18000, Algeria

* Corresponding author: Doria Affane

Received  May 2018 Revised  August 2019 Published  October 2019

In this work, we introduce a new concept of semi-continuous set-valued mappings, called almost mixed semi-continuity, by taking maps that are upper semi-continuous with almost convex values in some points and lower semi-continuous in remaining points. We generalize earlier results obtained for both mixed semi-continuous maps and almost convex sets. We discuss the existence of solution for evolution problems driven by the so-called sweeping process subject to external forces, known as perturbation to the system, by this type of set-valued mappings. Finally, we give some topological properties of the attainable and solution sets in order to solve an optimal time problem.

Citation: Doria Affane, Meriem Aissous, Mustapha Fateh Yarou. Almost mixed semi-continuous perturbation of Moreau's sweeping process. Evolution Equations & Control Theory, 2020, 9 (1) : 27-38. doi: 10.3934/eect.2020015
References:
[1]

D. AffaneM. Aissous and M. F. Yarou, Existence results for sweeping process with almost convex perturbation, Bull. Math. Soc. Sci. Math. Roumanie, 61 (2018), 119-134.   Google Scholar

[2]

D. Affane and D. Azzam-Laouir, Almost convex valued perturbation to time optimal control sweeping processes, Essaim: Control, Optim. Calcul. Variat., 23 (2017), 1-12.  doi: 10.1051/cocv/2015036.  Google Scholar

[3]

H. Attouch and A. Damlamian, On multivalued evolution equations in Hilbert spaces, Israel J. Math., 12 (1972), 373-390.  doi: 10.1007/BF02764629.  Google Scholar

[4]

M. Bounkhel and L. Thibault, Nonconvex sweeping process and prox-regularity in Hilbert space, J. Nonlin. Convex Anal., 6 (2005), 359-374.   Google Scholar

[5]

C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, Lectures Notes in Mathematics, Vol. 580. Springer-Verlag, Berlin-New York, 1977.  Google Scholar

[6]

A. Cellina and A. Ornelas, Existence of solution to differential inclusion and optimal control problems in the autonomous case, SIAM J. Control Optim., 42 (2003), 260-265.  doi: 10.1137/S0363012902408046.  Google Scholar

[7]

F. H. Clarke, Y. S. Ledyaev, R. J. Stern and P. R. Wolenski, Nonsmooth Analysis and Control Theory, Graduate Texts in Mathematics, 178. Springer-Verlag, New York, 1998.  Google Scholar

[8]

F. H. ClarkeR. J. Stern and P. R. Wolenski, Proximal smoothness and the lower-$C^{2}$ property, J. Convex Anal., 2 (1995), 117-144.   Google Scholar

[9]

B. Cornet, Existence of slow solutions for a class of differential inclusions, J. Math. Anal. Appl., 96 (1983), 130-147.  doi: 10.1016/0022-247X(83)90032-X.  Google Scholar

[10]

A. Fryszkowski and L. Gorniewicz, Mixed semi-continuous mappings and their applications to differential inclusions, Set-Valued Anal., 8 (2000), 203-217.  doi: 10.1023/A:1008763724495.  Google Scholar

[11]

T. Haddad and L. Thibault, Mixed semi-continuous perturbation of nonconvex sweeping process, Math. Program. Ser. B, 123 (2010), 225-240.  doi: 10.1007/s10107-009-0315-4.  Google Scholar

[12]

C. Henry, An existence theorem for a class of differential equation with multi-valued right hand side, J. Math. Anal. Appl., 41 (1973), 179-186.  doi: 10.1016/0022-247X(73)90192-3.  Google Scholar

[13]

R. A. PoliquinR. T. Rockafellar and L. Thibault, Local differentiability of distance functions, Trans. Math. Soc., 352 (2000), 5231-5249.  doi: 10.1090/S0002-9947-00-02550-2.  Google Scholar

[14]

L. Thibault, Sweeping process with regular and nonregular sets, J. Diff. Eqs., 193 (2003), 1-26.  doi: 10.1016/S0022-0396(03)00129-3.  Google Scholar

[15]

A. A. Tolstonogov, Solutions of a differential inclusion with unbounded right-hand side (Russian), Sib. Math. Zh., 29 (1988), 212-225.  doi: 10.1007/BF00970283.  Google Scholar

show all references

References:
[1]

D. AffaneM. Aissous and M. F. Yarou, Existence results for sweeping process with almost convex perturbation, Bull. Math. Soc. Sci. Math. Roumanie, 61 (2018), 119-134.   Google Scholar

[2]

D. Affane and D. Azzam-Laouir, Almost convex valued perturbation to time optimal control sweeping processes, Essaim: Control, Optim. Calcul. Variat., 23 (2017), 1-12.  doi: 10.1051/cocv/2015036.  Google Scholar

[3]

H. Attouch and A. Damlamian, On multivalued evolution equations in Hilbert spaces, Israel J. Math., 12 (1972), 373-390.  doi: 10.1007/BF02764629.  Google Scholar

[4]

M. Bounkhel and L. Thibault, Nonconvex sweeping process and prox-regularity in Hilbert space, J. Nonlin. Convex Anal., 6 (2005), 359-374.   Google Scholar

[5]

C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, Lectures Notes in Mathematics, Vol. 580. Springer-Verlag, Berlin-New York, 1977.  Google Scholar

[6]

A. Cellina and A. Ornelas, Existence of solution to differential inclusion and optimal control problems in the autonomous case, SIAM J. Control Optim., 42 (2003), 260-265.  doi: 10.1137/S0363012902408046.  Google Scholar

[7]

F. H. Clarke, Y. S. Ledyaev, R. J. Stern and P. R. Wolenski, Nonsmooth Analysis and Control Theory, Graduate Texts in Mathematics, 178. Springer-Verlag, New York, 1998.  Google Scholar

[8]

F. H. ClarkeR. J. Stern and P. R. Wolenski, Proximal smoothness and the lower-$C^{2}$ property, J. Convex Anal., 2 (1995), 117-144.   Google Scholar

[9]

B. Cornet, Existence of slow solutions for a class of differential inclusions, J. Math. Anal. Appl., 96 (1983), 130-147.  doi: 10.1016/0022-247X(83)90032-X.  Google Scholar

[10]

A. Fryszkowski and L. Gorniewicz, Mixed semi-continuous mappings and their applications to differential inclusions, Set-Valued Anal., 8 (2000), 203-217.  doi: 10.1023/A:1008763724495.  Google Scholar

[11]

T. Haddad and L. Thibault, Mixed semi-continuous perturbation of nonconvex sweeping process, Math. Program. Ser. B, 123 (2010), 225-240.  doi: 10.1007/s10107-009-0315-4.  Google Scholar

[12]

C. Henry, An existence theorem for a class of differential equation with multi-valued right hand side, J. Math. Anal. Appl., 41 (1973), 179-186.  doi: 10.1016/0022-247X(73)90192-3.  Google Scholar

[13]

R. A. PoliquinR. T. Rockafellar and L. Thibault, Local differentiability of distance functions, Trans. Math. Soc., 352 (2000), 5231-5249.  doi: 10.1090/S0002-9947-00-02550-2.  Google Scholar

[14]

L. Thibault, Sweeping process with regular and nonregular sets, J. Diff. Eqs., 193 (2003), 1-26.  doi: 10.1016/S0022-0396(03)00129-3.  Google Scholar

[15]

A. A. Tolstonogov, Solutions of a differential inclusion with unbounded right-hand side (Russian), Sib. Math. Zh., 29 (1988), 212-225.  doi: 10.1007/BF00970283.  Google Scholar

[1]

Ellina Grigorieva, Evgenii Khailov, Andrei Korobeinikov. Parametrization of the attainable set for a nonlinear control model of a biochemical process. Mathematical Biosciences & Engineering, 2013, 10 (4) : 1067-1094. doi: 10.3934/mbe.2013.10.1067

[2]

Tan H. Cao, Boris S. Mordukhovich. Optimal control of a perturbed sweeping process via discrete approximations. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3331-3358. doi: 10.3934/dcdsb.2016100

[3]

Lukáš Adam, Jiří Outrata. On optimal control of a sweeping process coupled with an ordinary differential equation. Discrete & Continuous Dynamical Systems - B, 2014, 19 (9) : 2709-2738. doi: 10.3934/dcdsb.2014.19.2709

[4]

Eric Baer, Alessio Figalli. Characterization of isoperimetric sets inside almost-convex cones. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 1-14. doi: 10.3934/dcds.2017001

[5]

Tan H. Cao, Boris S. Mordukhovich. Applications of optimal control of a nonconvex sweeping process to optimization of the planar crowd motion model. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 4191-4216. doi: 10.3934/dcdsb.2019078

[6]

Dalila Azzam-Laouir, Fatiha Selamnia. On state-dependent sweeping process in Banach spaces. Evolution Equations & Control Theory, 2018, 7 (2) : 183-196. doi: 10.3934/eect.2018009

[7]

Boumediene Abdellaoui, Abdelrazek Dieb, Enrico Valdinoci. A nonlocal concave-convex problem with nonlocal mixed boundary data. Communications on Pure & Applied Analysis, 2018, 17 (3) : 1103-1120. doi: 10.3934/cpaa.2018053

[8]

Wan-Tong Li, Bin-Guo Wang. Attractor minimal sets for nonautonomous type-K competitive and semi-convex delay differential equations with applications. Discrete & Continuous Dynamical Systems - A, 2009, 24 (2) : 589-611. doi: 10.3934/dcds.2009.24.589

[9]

Jinchuan Zhou, Changyu Wang, Naihua Xiu, Soonyi Wu. First-order optimality conditions for convex semi-infinite min-max programming with noncompact sets. Journal of Industrial & Management Optimization, 2009, 5 (4) : 851-866. doi: 10.3934/jimo.2009.5.851

[10]

Meixia Li, Changyu Wang, Biao Qu. Non-convex semi-infinite min-max optimization with noncompact sets. Journal of Industrial & Management Optimization, 2017, 13 (4) : 1859-1881. doi: 10.3934/jimo.2017022

[11]

Murat Adivar, Shu-Cherng Fang. Convex optimization on mixed domains. Journal of Industrial & Management Optimization, 2012, 8 (1) : 189-227. doi: 10.3934/jimo.2012.8.189

[12]

Tan H. Cao, Boris S. Mordukhovich. Optimality conditions for a controlled sweeping process with applications to the crowd motion model. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 267-306. doi: 10.3934/dcdsb.2017014

[13]

Dmitrii Rachinskii. On geometric conditions for reduction of the Moreau sweeping process to the Prandtl-Ishlinskii operator. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 3361-3386. doi: 10.3934/dcdsb.2018246

[14]

Md. Haider Ali Biswas, Maria do Rosário de Pinho. A nonsmooth maximum principle for optimal control problems with state and mixed constraints - convex case. Conference Publications, 2011, 2011 (Special) : 174-183. doi: 10.3934/proc.2011.2011.174

[15]

Roland Hildebrand. Barriers on projective convex sets. Conference Publications, 2011, 2011 (Special) : 672-683. doi: 10.3934/proc.2011.2011.672

[16]

Zhengyan Wang, Guanghua Xu, Peibiao Zhao, Zudi Lu. The optimal cash holding models for stochastic cash management of continuous time. Journal of Industrial & Management Optimization, 2018, 14 (1) : 1-17. doi: 10.3934/jimo.2017034

[17]

Zaidong Zhan, Shuping Chen, Wei Wei. A unified theory of maximum principle for continuous and discrete time optimal control problems. Mathematical Control & Related Fields, 2012, 2 (2) : 195-215. doi: 10.3934/mcrf.2012.2.195

[18]

Hui Meng, Fei Lung Yuen, Tak Kuen Siu, Hailiang Yang. Optimal portfolio in a continuous-time self-exciting threshold model. Journal of Industrial & Management Optimization, 2013, 9 (2) : 487-504. doi: 10.3934/jimo.2013.9.487

[19]

Pavel Krejčí, Thomas Roche. Lipschitz continuous data dependence of sweeping processes in BV spaces. Discrete & Continuous Dynamical Systems - B, 2011, 15 (3) : 637-650. doi: 10.3934/dcdsb.2011.15.637

[20]

Yuefen Chen, Yuanguo Zhu. Indefinite LQ optimal control with process state inequality constraints for discrete-time uncertain systems. Journal of Industrial & Management Optimization, 2018, 14 (3) : 913-930. doi: 10.3934/jimo.2017082

2018 Impact Factor: 1.048

Metrics

  • PDF downloads (72)
  • HTML views (48)
  • Cited by (0)

[Back to Top]