-
Previous Article
Uniform exponential stability of a fluid-plate interaction model due to thermal effects
- EECT Home
- This Issue
-
Next Article
Exact boundary observability and controllability of the wave equation in an interval with two moving endpoints
Almost mixed semi-continuous perturbation of Moreau's sweeping process
LMPA Laboratory, Department of Mathematics, Jijel University, 18000, Algeria |
In this work, we introduce a new concept of semi-continuous set-valued mappings, called almost mixed semi-continuity, by taking maps that are upper semi-continuous with almost convex values in some points and lower semi-continuous in remaining points. We generalize earlier results obtained for both mixed semi-continuous maps and almost convex sets. We discuss the existence of solution for evolution problems driven by the so-called sweeping process subject to external forces, known as perturbation to the system, by this type of set-valued mappings. Finally, we give some topological properties of the attainable and solution sets in order to solve an optimal time problem.
References:
[1] |
D. Affane, M. Aissous and M. F. Yarou,
Existence results for sweeping process with almost convex perturbation, Bull. Math. Soc. Sci. Math. Roumanie, 61 (2018), 119-134.
|
[2] |
D. Affane and D. Azzam-Laouir,
Almost convex valued perturbation to time optimal control sweeping processes, Essaim: Control, Optim. Calcul. Variat., 23 (2017), 1-12.
doi: 10.1051/cocv/2015036. |
[3] |
H. Attouch and A. Damlamian,
On multivalued evolution equations in Hilbert spaces, Israel J. Math., 12 (1972), 373-390.
doi: 10.1007/BF02764629. |
[4] |
M. Bounkhel and L. Thibault,
Nonconvex sweeping process and prox-regularity in Hilbert space, J. Nonlin. Convex Anal., 6 (2005), 359-374.
|
[5] |
C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, Lectures Notes in Mathematics, Vol. 580. Springer-Verlag, Berlin-New York, 1977. |
[6] |
A. Cellina and A. Ornelas,
Existence of solution to differential inclusion and optimal control problems in the autonomous case, SIAM J. Control Optim., 42 (2003), 260-265.
doi: 10.1137/S0363012902408046. |
[7] |
F. H. Clarke, Y. S. Ledyaev, R. J. Stern and P. R. Wolenski, Nonsmooth Analysis and Control Theory, Graduate Texts in Mathematics, 178. Springer-Verlag, New York, 1998. |
[8] |
F. H. Clarke, R. J. Stern and P. R. Wolenski,
Proximal smoothness and the lower-$C^{2}$ property, J. Convex Anal., 2 (1995), 117-144.
|
[9] |
B. Cornet,
Existence of slow solutions for a class of differential inclusions, J. Math. Anal. Appl., 96 (1983), 130-147.
doi: 10.1016/0022-247X(83)90032-X. |
[10] |
A. Fryszkowski and L. Gorniewicz,
Mixed semi-continuous mappings and their applications to differential inclusions, Set-Valued Anal., 8 (2000), 203-217.
doi: 10.1023/A:1008763724495. |
[11] |
T. Haddad and L. Thibault,
Mixed semi-continuous perturbation of nonconvex sweeping process, Math. Program. Ser. B, 123 (2010), 225-240.
doi: 10.1007/s10107-009-0315-4. |
[12] |
C. Henry,
An existence theorem for a class of differential equation with multi-valued right hand side, J. Math. Anal. Appl., 41 (1973), 179-186.
doi: 10.1016/0022-247X(73)90192-3. |
[13] |
R. A. Poliquin, R. T. Rockafellar and L. Thibault,
Local differentiability of distance functions, Trans. Math. Soc., 352 (2000), 5231-5249.
doi: 10.1090/S0002-9947-00-02550-2. |
[14] |
L. Thibault,
Sweeping process with regular and nonregular sets, J. Diff. Eqs., 193 (2003), 1-26.
doi: 10.1016/S0022-0396(03)00129-3. |
[15] |
A. A. Tolstonogov,
Solutions of a differential inclusion with unbounded right-hand side (Russian), Sib. Math. Zh., 29 (1988), 212-225.
doi: 10.1007/BF00970283. |
show all references
References:
[1] |
D. Affane, M. Aissous and M. F. Yarou,
Existence results for sweeping process with almost convex perturbation, Bull. Math. Soc. Sci. Math. Roumanie, 61 (2018), 119-134.
|
[2] |
D. Affane and D. Azzam-Laouir,
Almost convex valued perturbation to time optimal control sweeping processes, Essaim: Control, Optim. Calcul. Variat., 23 (2017), 1-12.
doi: 10.1051/cocv/2015036. |
[3] |
H. Attouch and A. Damlamian,
On multivalued evolution equations in Hilbert spaces, Israel J. Math., 12 (1972), 373-390.
doi: 10.1007/BF02764629. |
[4] |
M. Bounkhel and L. Thibault,
Nonconvex sweeping process and prox-regularity in Hilbert space, J. Nonlin. Convex Anal., 6 (2005), 359-374.
|
[5] |
C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, Lectures Notes in Mathematics, Vol. 580. Springer-Verlag, Berlin-New York, 1977. |
[6] |
A. Cellina and A. Ornelas,
Existence of solution to differential inclusion and optimal control problems in the autonomous case, SIAM J. Control Optim., 42 (2003), 260-265.
doi: 10.1137/S0363012902408046. |
[7] |
F. H. Clarke, Y. S. Ledyaev, R. J. Stern and P. R. Wolenski, Nonsmooth Analysis and Control Theory, Graduate Texts in Mathematics, 178. Springer-Verlag, New York, 1998. |
[8] |
F. H. Clarke, R. J. Stern and P. R. Wolenski,
Proximal smoothness and the lower-$C^{2}$ property, J. Convex Anal., 2 (1995), 117-144.
|
[9] |
B. Cornet,
Existence of slow solutions for a class of differential inclusions, J. Math. Anal. Appl., 96 (1983), 130-147.
doi: 10.1016/0022-247X(83)90032-X. |
[10] |
A. Fryszkowski and L. Gorniewicz,
Mixed semi-continuous mappings and their applications to differential inclusions, Set-Valued Anal., 8 (2000), 203-217.
doi: 10.1023/A:1008763724495. |
[11] |
T. Haddad and L. Thibault,
Mixed semi-continuous perturbation of nonconvex sweeping process, Math. Program. Ser. B, 123 (2010), 225-240.
doi: 10.1007/s10107-009-0315-4. |
[12] |
C. Henry,
An existence theorem for a class of differential equation with multi-valued right hand side, J. Math. Anal. Appl., 41 (1973), 179-186.
doi: 10.1016/0022-247X(73)90192-3. |
[13] |
R. A. Poliquin, R. T. Rockafellar and L. Thibault,
Local differentiability of distance functions, Trans. Math. Soc., 352 (2000), 5231-5249.
doi: 10.1090/S0002-9947-00-02550-2. |
[14] |
L. Thibault,
Sweeping process with regular and nonregular sets, J. Diff. Eqs., 193 (2003), 1-26.
doi: 10.1016/S0022-0396(03)00129-3. |
[15] |
A. A. Tolstonogov,
Solutions of a differential inclusion with unbounded right-hand side (Russian), Sib. Math. Zh., 29 (1988), 212-225.
doi: 10.1007/BF00970283. |
[1] |
Xiaojin Zheng, Zhongyi Jiang. Tighter quadratically constrained convex reformulations for semi-continuous quadratic programming. Journal of Industrial and Management Optimization, 2021, 17 (5) : 2331-2343. doi: 10.3934/jimo.2020071 |
[2] |
Ellina Grigorieva, Evgenii Khailov, Andrei Korobeinikov. Parametrization of the attainable set for a nonlinear control model of a biochemical process. Mathematical Biosciences & Engineering, 2013, 10 (4) : 1067-1094. doi: 10.3934/mbe.2013.10.1067 |
[3] |
Alexander Tolstonogov. BV solutions of a convex sweeping process with a composed perturbation. Evolution Equations and Control Theory, 2022, 11 (2) : 537-557. doi: 10.3934/eect.2021012 |
[4] |
Tan H. Cao, Boris S. Mordukhovich. Optimal control of a perturbed sweeping process via discrete approximations. Discrete and Continuous Dynamical Systems - B, 2016, 21 (10) : 3331-3358. doi: 10.3934/dcdsb.2016100 |
[5] |
Lukáš Adam, Jiří Outrata. On optimal control of a sweeping process coupled with an ordinary differential equation. Discrete and Continuous Dynamical Systems - B, 2014, 19 (9) : 2709-2738. doi: 10.3934/dcdsb.2014.19.2709 |
[6] |
Jonas Lampart. A remark on the attainable set of the Schrödinger equation. Evolution Equations and Control Theory, 2021, 10 (3) : 461-469. doi: 10.3934/eect.2020075 |
[7] |
Eric Baer, Alessio Figalli. Characterization of isoperimetric sets inside almost-convex cones. Discrete and Continuous Dynamical Systems, 2017, 37 (1) : 1-14. doi: 10.3934/dcds.2017001 |
[8] |
Tan H. Cao, Boris S. Mordukhovich. Applications of optimal control of a nonconvex sweeping process to optimization of the planar crowd motion model. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 4191-4216. doi: 10.3934/dcdsb.2019078 |
[9] |
Dalila Azzam-Laouir, Fatiha Selamnia. On state-dependent sweeping process in Banach spaces. Evolution Equations and Control Theory, 2018, 7 (2) : 183-196. doi: 10.3934/eect.2018009 |
[10] |
Boumediene Abdellaoui, Abdelrazek Dieb, Enrico Valdinoci. A nonlocal concave-convex problem with nonlocal mixed boundary data. Communications on Pure and Applied Analysis, 2018, 17 (3) : 1103-1120. doi: 10.3934/cpaa.2018053 |
[11] |
Wan-Tong Li, Bin-Guo Wang. Attractor minimal sets for nonautonomous type-K competitive and semi-convex delay differential equations with applications. Discrete and Continuous Dynamical Systems, 2009, 24 (2) : 589-611. doi: 10.3934/dcds.2009.24.589 |
[12] |
Jinchuan Zhou, Changyu Wang, Naihua Xiu, Soonyi Wu. First-order optimality conditions for convex semi-infinite min-max programming with noncompact sets. Journal of Industrial and Management Optimization, 2009, 5 (4) : 851-866. doi: 10.3934/jimo.2009.5.851 |
[13] |
Meixia Li, Changyu Wang, Biao Qu. Non-convex semi-infinite min-max optimization with noncompact sets. Journal of Industrial and Management Optimization, 2017, 13 (4) : 1859-1881. doi: 10.3934/jimo.2017022 |
[14] |
Murat Adivar, Shu-Cherng Fang. Convex optimization on mixed domains. Journal of Industrial and Management Optimization, 2012, 8 (1) : 189-227. doi: 10.3934/jimo.2012.8.189 |
[15] |
Dmitrii Rachinskii. On geometric conditions for reduction of the Moreau sweeping process to the Prandtl-Ishlinskii operator. Discrete and Continuous Dynamical Systems - B, 2018, 23 (8) : 3361-3386. doi: 10.3934/dcdsb.2018246 |
[16] |
Tan H. Cao, Boris S. Mordukhovich. Optimality conditions for a controlled sweeping process with applications to the crowd motion model. Discrete and Continuous Dynamical Systems - B, 2017, 22 (2) : 267-306. doi: 10.3934/dcdsb.2017014 |
[17] |
Md. Haider Ali Biswas, Maria do Rosário de Pinho. A nonsmooth maximum principle for optimal control problems with state and mixed constraints - convex case. Conference Publications, 2011, 2011 (Special) : 174-183. doi: 10.3934/proc.2011.2011.174 |
[18] |
Roland Hildebrand. Barriers on projective convex sets. Conference Publications, 2011, 2011 (Special) : 672-683. doi: 10.3934/proc.2011.2011.672 |
[19] |
Pavel Krejčí, Giselle Antunes Monteiro, Vincenzo Recupero. Non-convex sweeping processes in the space of regulated functions. Communications on Pure and Applied Analysis, , () : -. doi: 10.3934/cpaa.2022087 |
[20] |
Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems and Imaging, 2021, 15 (2) : 315-338. doi: 10.3934/ipi.2020070 |
2020 Impact Factor: 1.081
Tools
Metrics
Other articles
by authors
[Back to Top]