This article is devoted to the study of a distributed control problem, with the control in coefficients, inspired by a disease that can lead to serious health problems: high blood pressure. We are concerned with the determination of a viscosity function that realizes an optimal blood pressure configuration. Using the mathematical model for viscous fluid-elastic structure interaction problems, we present existence, uniqueness, regularity results and estimates for the three unknown functions of the problem: velocity and pressure of the fluid and displacement of the elastic medium. The weak regularity of the state provided by the variational approach of the problem as well as the choice of the control variable induce some difficulties in the proof of the existence of an optimal control. The choice of the cost functional leads to an adjoint system which is not a divergence free one. For analyzing it, we propose a method based on the construction of several functions with suitable properties. Finally, we establish the necessary conditions of optimality.
Citation: |
[1] |
P. Blanchard and E. Brüning, Mathematical Methods in Physics: Distributions, Hilbert Space Operators and Variational Methods, Progress in Mathematical Physics, 26. Birkhäuser Boston, Inc., Boston, MA, 2003.
![]() ![]() |
[2] |
H. Brezis, Analyse Fonctionnelle, Théorie et Applications, Collection Mathématiques Appliquées pour la Maétrise, Masson, Paris, 1983.
![]() ![]() |
[3] |
E. Casas, Optimal control in coefficients of elliptic equations with state constraints, Appl. Math. Optim., 26 (1992), 21-37.
doi: 10.1007/BF01218394.![]() ![]() ![]() |
[4] |
I. Ciuperca, M. El Alaoui Talibi and M. Jai, On the optimal control of coefficients in elliptic problems. Application to the optimization of the head slider, ESAIM: Control, Optim. Calc. Var., 11 (2005), 102-121.
doi: 10.1051/cocv:2004029.![]() ![]() ![]() |
[5] |
G. Fragnelli, G. Marinoschi, R. M. Mininni and S. Romanelli, Identification of a diffusion coefficient in strongly degenerate parabolic equations with interior degeneracy, J. Evol. Equ., 15 (2015), 27-51.
doi: 10.1007/s00028-014-0247-1.![]() ![]() ![]() |
[6] |
G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Vol. I. Linearized Steady Problems, Springer Tracts in Natural Philosophy, 38. Springer-Verlag, New York, 1994.
doi: 10.1007/978-1-4612-5364-8.![]() ![]() ![]() |
[7] |
P. I. Kogut and G. Leugering, Optimal $L^1$-Control in Coefficients for Dirichlet Elliptic Problems: $H$-Optimal Solutions, Z. Anal. Anwend., 31 (2012), 31-53.
doi: 10.4171/ZAA/1447.![]() ![]() ![]() |
[8] |
J.-L. Lions, Contrôle Optimal de Systèmes Gouvernés par des Équations aux Dérivées Partielles, Avant Propos de P. Lelong Dunod, Paris, Gauthier-Villars, Paris, 1968.
![]() ![]() |
[9] |
I. Malakhova-Ziablova, G. Panasenko and R. Stavre, Asymptotic analysis of a thin rigid stratified elastic plate-viscous fluid interaction problem, Appl. Anal., 95 (2016), 1467-1506.
doi: 10.1080/00036811.2015.1132311.![]() ![]() ![]() |
[10] |
G. P. Panasenko and R. Stavre, Asymptotic analysis of a viscous fluid-thin plate interaction: Periodic flow, Math. Models Methods Appl. Sci., 24 (2014), 1781-1822.
doi: 10.1142/S0218202514500079.![]() ![]() ![]() |
[11] |
J. Sokolowski, Optimal control in coefficients for weak variational problems in Hilbert space, Appl. Math. Optim., 7 (1981), 283-293.
doi: 10.1007/BF01442121.![]() ![]() ![]() |
[12] |
R. Stavre, The control of the pressure for a micropolar fluid, Z. angew. Math. Phys. (ZAMP), 53 (2002), 912-922.
doi: 10.1007/PL00012619.![]() ![]() ![]() |
[13] |
R. Stavre, Optimization of the blood flow in venous insufficiency, Annals Univ. Bucharest, 5 (2014), 383-402.
![]() ![]() |
[14] |
R. Stavre, A boundary control problem for the blood flow in venous insufficiency. The general case, Nonlinear Anal. Real World Appl., 29 (2016), 98-116.
doi: 10.1016/j.nonrwa.2015.11.003.![]() ![]() ![]() |
[15] |
R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis, AMS Chelsea Publishing, Providence, Rhode Island, 2001.
doi: 10.1090/chel/343.![]() ![]() ![]() |