doi: 10.3934/eect.2020020

Robust attractors for a Kirchhoff-Boussinesq type equation

1. 

School of Mathematics and Statistics, Zhengzhou University, No.100, Science Road, Zhengzhou 450001, China

2. 

College of Science, Zhongyuan University of Technology, No.41, Zhongyuan Road, Zhengzhou 450007, China

* Corresponding author: Zhijian Yang

Received  October 2018 Revised  January 2019 Published  December 2019

Fund Project: The authors are supported by NNSF of China (Grant No. 11671367)

The paper studies the existence of the pullback attractors and robust pullback exponential attractors for a Kirchhoff-Boussinesq type equation: $ u_{tt}-\Delta u_{t}+\Delta^{2} u = div\Big\{\frac{\nabla u}{\sqrt{1+|\nabla u|^{2}}}\Big\}+\Delta g(u)+f(x,t) $. We show that when the growth exponent $ p $ of the nonlinearity $ g(u) $ is up to the critical range: $ 1\leq p\leq p^*\equiv\frac{N+2}{(N-2)^{+}} $, (ⅰ) the IBVP of the equation is well-posed, and its solution has additionally global regularity when $ t>\tau $; (ⅱ) the related dynamical process $ \{U_f(t,\tau)\} $ has a pullback attractor; (ⅲ) in particular, when $ 1\leq p< p^* $, the process $ \{U_f(t,\tau)\} $ has a family of pullback exponential attractors, which is stable with respect to the perturbation $ f\in \Sigma $ (the sign space).

Citation: Zhijian Yang, Na Feng, Yanan Li. Robust attractors for a Kirchhoff-Boussinesq type equation. Evolution Equations & Control Theory, doi: 10.3934/eect.2020020
References:
[1]

J. L. Bona and R. L. Sachs, Global existence of smooth solutions and stability of solitary waves for a generalized Boussinesq equation, Comm. Math. Phys., 118 (1988), 15-29.  doi: 10.1007/BF01218475.  Google Scholar

[2]

A. N. CarvalhoI. A. Langa and J. C. Robinson, On the continuity of pullback attractors for evolution processes, Nonlinear Anal., 71 (2009), 1812-1824.  doi: 10.1016/j.na.2009.01.016.  Google Scholar

[3]

A. N. Carvalho, I. A. Langa and J. C. Robinson, Attractors for Infinite-Dimensional Non-Autonomous Dynamical Systems, Applied Mathematical Sciences, 182. Springer, New York, 2013. doi: 10.1007/978-1-4614-4581-4.  Google Scholar

[4]

A. N. Carvalho and S. Sonner, Pullback exponential attractors for evolution processes in Banach spaces: Theoretical result, Commun. Pure Appl. Anal., 12 (2013), 3047-3071.  doi: 10.3934/cpaa.2013.12.3047.  Google Scholar

[5]

A. N. Carvalho and S. Sonner, Pullback exponential attractors for evolution processes in Banach spaces: Properties and applications, Commun. Pure Appl. Anal., 13 (2014), 1141-1165.  doi: 10.3934/cpaa.2014.13.1141.  Google Scholar

[6]

I. Chueshov and I. Lasiecka, Existence, uniqueness of weak solutions and global attractors for a class of 2D Kirchhoff-Boussinesq models, Discrete Contin. Dyn. Syst., 15 (2006), 777-809.  doi: 10.3934/dcds.2006.15.777.  Google Scholar

[7]

I. Chueshov and I. Lasiecka, Long-time behavior of second order evolution equations with nonlinear damping, Mem. Amer. Math. Soc., 195 (2008). doi: 10.1090/memo/0912.  Google Scholar

[8]

I. Chueshov and I. Lasiecka, On global attractor for 2D Kirchhoff-Boussinesq model with supercritical nonlinearity, Comm. Partial Differential Equations, 36 (2011), 67-69.  doi: 10.1080/03605302.2010.484472.  Google Scholar

[9]

I. Chueshov, Long-time dynamics of Kirchhoff wave models with strong nonlinear damping, J. Differential Equations, 252 (2012), 1229-1262.  doi: 10.1016/j.jde.2011.08.022.  Google Scholar

[10]

R. Czaja and M. A. Efendiev, Pullback exponential attractors for nonautonomous equations Part Ⅰ: Semilinear parabolic equations, J. Math. Anal. Appl., 381 (2011), 748-765.  doi: 10.1016/j.jmaa.2011.03.053.  Google Scholar

[11]

P. Y. DingZ. J. Yang and Y. N. Li, Global attractor of the Kirchhoff wave models with strong nonlinear damping, Appl. Math. Letters, 76 (2018), 40-45.  doi: 10.1016/j.aml.2017.07.008.  Google Scholar

[12]

M. A. EfendievA. Miranville and S. Zelik, Exponential attractors and finite-dimensional reduction for nonautonomous dynamical systems, Proc. Roy. Soc. Edinburgh Sect. A, 135 (2005), 703-730.  doi: 10.1017/S030821050000408X.  Google Scholar

[13]

M. A. EfendievY. Yamamoto and A. Yagi, Exponential attractors for nonautonomous dynamical systems, J. Math. Soc. Japan, 63 (2011), 647-673.  doi: 10.2969/jmsj/06320647.  Google Scholar

[14]

M. GrasselliG. Schimperna and S. Zelik, On the 2D Cahn-Hilliard equation with inertial term, Comm. Partial Differential Equations, 34 (2009), 137-170.  doi: 10.1080/03605300802608247.  Google Scholar

[15]

M. GrasselliG. SchimpernaA. Segatti and S. Zelik, On the 3D Cahn-Hilliard equation with inertial term, J. Evol. Equ., 9 (2009), 371-404.  doi: 10.1007/s00028-009-0017-7.  Google Scholar

[16]

V. Kalantarov and S. Zelik, Finite-dimensional attractors for the quasi-linear strongly damped wave equation, J. Differential Equations, 247 (2009), 1120-1155.  doi: 10.1016/j.jde.2009.04.010.  Google Scholar

[17]

S. Kawashima and Y. Shibata, Global existence and exponential stability of small solutions to nonlinear viscoelasticity, Comm. Math. Phys., 148 (1992), 189-208.  doi: 10.1007/BF02102372.  Google Scholar

[18]

K. KobayashiH. Pecher and Y. Shibata, On a global in time existence theorem of smooth solutions to a nonlinear wave equation with viscosity, Math. Ann., 296 (1993), 215-234.  doi: 10.1007/BF01445103.  Google Scholar

[19]

L. A. LangaA. Miranville and J. Real, Pullback exponential attractors, Discrete Contin. Dyn. Syst., 26 (2010), 1329-1357.  doi: 10.3934/dcds.2010.26.1329.  Google Scholar

[20]

J. Lagnese and J. L. Lions, Modeling Analysis and Control of Thin Plates, Recherches en Mathématiques Appliquées [Research in Applied Mathematics], 6. Masson, Paris, 1988.  Google Scholar

[21]

J. E. Lagnese, Boundary Stabilization of Thin Plates, SIAM Studies in Applied Mathematics, 10. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1989. doi: 10.1137/1.9781611970821.  Google Scholar

[22]

F. Linares, Global existence of small solutions for a generalized Boussinesq equation, J. Differential Equations, 106 (1993), 257-293.  doi: 10.1006/jdeq.1993.1108.  Google Scholar

[23]

T. F. Ma and M. L. Pelicer, Attractors for weakly damped beam equation with $p$-Laplacian, Discrete Contin. Dyn. Syst. 2013, Dynamical Systems, Differential Equations and Applications. 9th AIMS Conference. Suppl., 34 (2013), 525-534.  doi: 10.3934/proc.2013.2013.525.  Google Scholar

[24]

M. Nakao, Energy decay for the quasilinear wave equation with viscosity, Math. Z., 219 (1995), 289-299.  doi: 10.1007/BF02572366.  Google Scholar

[25]

J. Simon, Compact sets in the space $L^{p}(0, T;B)$, Ann. Mat. Pura Appl., 146 (1987), 65-96.  doi: 10.1007/BF01762360.  Google Scholar

[26]

C. Y. SunD. M. Cao and J. Q. Duan, Non-autonomous dynamics of wave equations with nonlinear damping and critical nonlinearity, Nonlinearity, 19 (2006), 2645-2665.  doi: 10.1088/0951-7715/19/11/008.  Google Scholar

[27]

V. Varlamov, Eigenfunction expansion method and the long-time asymptotics for the damped Boussinesq equation, Discrete Contin. Dynam. Systems, 7 (2001), 675-702.  doi: 10.3934/dcds.2001.7.675.  Google Scholar

[28]

Y. H. Wang and C. K. Zhong, Upper semicontinuity of pullback attractors for nonautonomous Kirchhoff wave models, Discrete Contin. Dyn. Syst., 33 (2013), 3189-3209.  doi: 10.3934/dcds.2013.33.3189.  Google Scholar

[29]

Z. J. Yang, Finite-dimensional attractors for the Kirchhoff models, J. Math. Phys., 51 (2010), 092703, 25 pp. doi: 10.1063/1.3477939.  Google Scholar

[30]

Z. J. Yang, Longtime dynamics of the damped Boussinesq equations, J. Math. Anal. Appl., 399 (2013), 180-190.  doi: 10.1016/j.jmaa.2012.09.042.  Google Scholar

[31]

Z. J. Yang and Z. M. Liu, Longtime dynamics of the for the quasi-linear wave equations with structural damping and supercritical nonlinearity, Nonlinearity, 30 (2017), 1120-1145.  doi: 10.1088/1361-6544/aa599f.  Google Scholar

[32]

Z. J. Yang and P. Y. Ding, Longtime dynamics of Boussinesq type equations with fractional damping, Nonlinear Anal., 161 (2017), 108-130.  doi: 10.1016/j.na.2017.05.015.  Google Scholar

[33]

Z. J. Yang and Y. N. Li, Criteria on the existence and stability of pullback exponential attractors and their application to non-autonomous Kirchhoff wave models, Discrete Contin. Dyn. Syst., 38 (2018), 2629-2653.  doi: 10.3934/dcds.2018111.  Google Scholar

[34]

Z. J. YangP. Y. Ding and X. B. Liu, Attractors and their stability on Boussinesq type equations with gentle dissipation, Comm. Pure Appl. Anal., 18 (2019), 911-930.  doi: 10.3934/cpaa.2019044.  Google Scholar

[35]

X. G. YangZ. H. Fan and K. Li, Uniform attractor for non-autonomous Boussinesq-type equation with critical nonlinearity, Math. Meth. Appl. Sci., 39 (2016), 3075-3087.  doi: 10.1002/mma.3753.  Google Scholar

show all references

References:
[1]

J. L. Bona and R. L. Sachs, Global existence of smooth solutions and stability of solitary waves for a generalized Boussinesq equation, Comm. Math. Phys., 118 (1988), 15-29.  doi: 10.1007/BF01218475.  Google Scholar

[2]

A. N. CarvalhoI. A. Langa and J. C. Robinson, On the continuity of pullback attractors for evolution processes, Nonlinear Anal., 71 (2009), 1812-1824.  doi: 10.1016/j.na.2009.01.016.  Google Scholar

[3]

A. N. Carvalho, I. A. Langa and J. C. Robinson, Attractors for Infinite-Dimensional Non-Autonomous Dynamical Systems, Applied Mathematical Sciences, 182. Springer, New York, 2013. doi: 10.1007/978-1-4614-4581-4.  Google Scholar

[4]

A. N. Carvalho and S. Sonner, Pullback exponential attractors for evolution processes in Banach spaces: Theoretical result, Commun. Pure Appl. Anal., 12 (2013), 3047-3071.  doi: 10.3934/cpaa.2013.12.3047.  Google Scholar

[5]

A. N. Carvalho and S. Sonner, Pullback exponential attractors for evolution processes in Banach spaces: Properties and applications, Commun. Pure Appl. Anal., 13 (2014), 1141-1165.  doi: 10.3934/cpaa.2014.13.1141.  Google Scholar

[6]

I. Chueshov and I. Lasiecka, Existence, uniqueness of weak solutions and global attractors for a class of 2D Kirchhoff-Boussinesq models, Discrete Contin. Dyn. Syst., 15 (2006), 777-809.  doi: 10.3934/dcds.2006.15.777.  Google Scholar

[7]

I. Chueshov and I. Lasiecka, Long-time behavior of second order evolution equations with nonlinear damping, Mem. Amer. Math. Soc., 195 (2008). doi: 10.1090/memo/0912.  Google Scholar

[8]

I. Chueshov and I. Lasiecka, On global attractor for 2D Kirchhoff-Boussinesq model with supercritical nonlinearity, Comm. Partial Differential Equations, 36 (2011), 67-69.  doi: 10.1080/03605302.2010.484472.  Google Scholar

[9]

I. Chueshov, Long-time dynamics of Kirchhoff wave models with strong nonlinear damping, J. Differential Equations, 252 (2012), 1229-1262.  doi: 10.1016/j.jde.2011.08.022.  Google Scholar

[10]

R. Czaja and M. A. Efendiev, Pullback exponential attractors for nonautonomous equations Part Ⅰ: Semilinear parabolic equations, J. Math. Anal. Appl., 381 (2011), 748-765.  doi: 10.1016/j.jmaa.2011.03.053.  Google Scholar

[11]

P. Y. DingZ. J. Yang and Y. N. Li, Global attractor of the Kirchhoff wave models with strong nonlinear damping, Appl. Math. Letters, 76 (2018), 40-45.  doi: 10.1016/j.aml.2017.07.008.  Google Scholar

[12]

M. A. EfendievA. Miranville and S. Zelik, Exponential attractors and finite-dimensional reduction for nonautonomous dynamical systems, Proc. Roy. Soc. Edinburgh Sect. A, 135 (2005), 703-730.  doi: 10.1017/S030821050000408X.  Google Scholar

[13]

M. A. EfendievY. Yamamoto and A. Yagi, Exponential attractors for nonautonomous dynamical systems, J. Math. Soc. Japan, 63 (2011), 647-673.  doi: 10.2969/jmsj/06320647.  Google Scholar

[14]

M. GrasselliG. Schimperna and S. Zelik, On the 2D Cahn-Hilliard equation with inertial term, Comm. Partial Differential Equations, 34 (2009), 137-170.  doi: 10.1080/03605300802608247.  Google Scholar

[15]

M. GrasselliG. SchimpernaA. Segatti and S. Zelik, On the 3D Cahn-Hilliard equation with inertial term, J. Evol. Equ., 9 (2009), 371-404.  doi: 10.1007/s00028-009-0017-7.  Google Scholar

[16]

V. Kalantarov and S. Zelik, Finite-dimensional attractors for the quasi-linear strongly damped wave equation, J. Differential Equations, 247 (2009), 1120-1155.  doi: 10.1016/j.jde.2009.04.010.  Google Scholar

[17]

S. Kawashima and Y. Shibata, Global existence and exponential stability of small solutions to nonlinear viscoelasticity, Comm. Math. Phys., 148 (1992), 189-208.  doi: 10.1007/BF02102372.  Google Scholar

[18]

K. KobayashiH. Pecher and Y. Shibata, On a global in time existence theorem of smooth solutions to a nonlinear wave equation with viscosity, Math. Ann., 296 (1993), 215-234.  doi: 10.1007/BF01445103.  Google Scholar

[19]

L. A. LangaA. Miranville and J. Real, Pullback exponential attractors, Discrete Contin. Dyn. Syst., 26 (2010), 1329-1357.  doi: 10.3934/dcds.2010.26.1329.  Google Scholar

[20]

J. Lagnese and J. L. Lions, Modeling Analysis and Control of Thin Plates, Recherches en Mathématiques Appliquées [Research in Applied Mathematics], 6. Masson, Paris, 1988.  Google Scholar

[21]

J. E. Lagnese, Boundary Stabilization of Thin Plates, SIAM Studies in Applied Mathematics, 10. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1989. doi: 10.1137/1.9781611970821.  Google Scholar

[22]

F. Linares, Global existence of small solutions for a generalized Boussinesq equation, J. Differential Equations, 106 (1993), 257-293.  doi: 10.1006/jdeq.1993.1108.  Google Scholar

[23]

T. F. Ma and M. L. Pelicer, Attractors for weakly damped beam equation with $p$-Laplacian, Discrete Contin. Dyn. Syst. 2013, Dynamical Systems, Differential Equations and Applications. 9th AIMS Conference. Suppl., 34 (2013), 525-534.  doi: 10.3934/proc.2013.2013.525.  Google Scholar

[24]

M. Nakao, Energy decay for the quasilinear wave equation with viscosity, Math. Z., 219 (1995), 289-299.  doi: 10.1007/BF02572366.  Google Scholar

[25]

J. Simon, Compact sets in the space $L^{p}(0, T;B)$, Ann. Mat. Pura Appl., 146 (1987), 65-96.  doi: 10.1007/BF01762360.  Google Scholar

[26]

C. Y. SunD. M. Cao and J. Q. Duan, Non-autonomous dynamics of wave equations with nonlinear damping and critical nonlinearity, Nonlinearity, 19 (2006), 2645-2665.  doi: 10.1088/0951-7715/19/11/008.  Google Scholar

[27]

V. Varlamov, Eigenfunction expansion method and the long-time asymptotics for the damped Boussinesq equation, Discrete Contin. Dynam. Systems, 7 (2001), 675-702.  doi: 10.3934/dcds.2001.7.675.  Google Scholar

[28]

Y. H. Wang and C. K. Zhong, Upper semicontinuity of pullback attractors for nonautonomous Kirchhoff wave models, Discrete Contin. Dyn. Syst., 33 (2013), 3189-3209.  doi: 10.3934/dcds.2013.33.3189.  Google Scholar

[29]

Z. J. Yang, Finite-dimensional attractors for the Kirchhoff models, J. Math. Phys., 51 (2010), 092703, 25 pp. doi: 10.1063/1.3477939.  Google Scholar

[30]

Z. J. Yang, Longtime dynamics of the damped Boussinesq equations, J. Math. Anal. Appl., 399 (2013), 180-190.  doi: 10.1016/j.jmaa.2012.09.042.  Google Scholar

[31]

Z. J. Yang and Z. M. Liu, Longtime dynamics of the for the quasi-linear wave equations with structural damping and supercritical nonlinearity, Nonlinearity, 30 (2017), 1120-1145.  doi: 10.1088/1361-6544/aa599f.  Google Scholar

[32]

Z. J. Yang and P. Y. Ding, Longtime dynamics of Boussinesq type equations with fractional damping, Nonlinear Anal., 161 (2017), 108-130.  doi: 10.1016/j.na.2017.05.015.  Google Scholar

[33]

Z. J. Yang and Y. N. Li, Criteria on the existence and stability of pullback exponential attractors and their application to non-autonomous Kirchhoff wave models, Discrete Contin. Dyn. Syst., 38 (2018), 2629-2653.  doi: 10.3934/dcds.2018111.  Google Scholar

[34]

Z. J. YangP. Y. Ding and X. B. Liu, Attractors and their stability on Boussinesq type equations with gentle dissipation, Comm. Pure Appl. Anal., 18 (2019), 911-930.  doi: 10.3934/cpaa.2019044.  Google Scholar

[35]

X. G. YangZ. H. Fan and K. Li, Uniform attractor for non-autonomous Boussinesq-type equation with critical nonlinearity, Math. Meth. Appl. Sci., 39 (2016), 3075-3087.  doi: 10.1002/mma.3753.  Google Scholar

[1]

Nobu Kishimoto, Minjie Shan, Yoshio Tsutsumi. Global well-posedness and existence of the global attractor for the Kadomtsev-Petviashvili Ⅱ equation in the anisotropic Sobolev space. Discrete & Continuous Dynamical Systems - A, 2020, 40 (3) : 1283-1307. doi: 10.3934/dcds.2020078

[2]

Zhijian Yang, Yanan Li. Criteria on the existence and stability of pullback exponential attractors and their application to non-autonomous kirchhoff wave models. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2629-2653. doi: 10.3934/dcds.2018111

[3]

Stefan Meyer, Mathias Wilke. Global well-posedness and exponential stability for Kuznetsov's equation in $L_p$-spaces. Evolution Equations & Control Theory, 2013, 2 (2) : 365-378. doi: 10.3934/eect.2013.2.365

[4]

Wen Tan. The regularity of pullback attractor for a non-autonomous p-Laplacian equation with dynamical boundary condition. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 529-546. doi: 10.3934/dcdsb.2018194

[5]

Rodrigo Samprogna, Tomás Caraballo. Pullback attractor for a dynamic boundary non-autonomous problem with Infinite Delay. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 509-523. doi: 10.3934/dcdsb.2017195

[6]

T. Caraballo, J. A. Langa, J. Valero. Structure of the pullback attractor for a non-autonomous scalar differential inclusion. Discrete & Continuous Dynamical Systems - S, 2016, 9 (4) : 979-994. doi: 10.3934/dcdss.2016037

[7]

Zeqi Zhu, Caidi Zhao. Pullback attractor and invariant measures for the three-dimensional regularized MHD equations. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1461-1477. doi: 10.3934/dcds.2018060

[8]

Thomas Y. Hou, Congming Li. Global well-posedness of the viscous Boussinesq equations. Discrete & Continuous Dynamical Systems - A, 2005, 12 (1) : 1-12. doi: 10.3934/dcds.2005.12.1

[9]

José A. Langa, Alain Miranville, José Real. Pullback exponential attractors. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1329-1357. doi: 10.3934/dcds.2010.26.1329

[10]

Luiz Gustavo Farah. Local solutions in Sobolev spaces and unconditional well-posedness for the generalized Boussinesq equation. Communications on Pure & Applied Analysis, 2009, 8 (5) : 1521-1539. doi: 10.3934/cpaa.2009.8.1521

[11]

Dalibor Pražák. Exponential attractor for the delayed logistic equation with a nonlinear diffusion. Conference Publications, 2003, 2003 (Special) : 717-726. doi: 10.3934/proc.2003.2003.717

[12]

Tarek Saanouni. Global well-posedness of some high-order semilinear wave and Schrödinger type equations with exponential nonlinearity. Communications on Pure & Applied Analysis, 2014, 13 (1) : 273-291. doi: 10.3934/cpaa.2014.13.273

[13]

Qunyi Bie, Qiru Wang, Zheng-An Yao. On the well-posedness of the inviscid Boussinesq equations in the Besov-Morrey spaces. Kinetic & Related Models, 2015, 8 (3) : 395-411. doi: 10.3934/krm.2015.8.395

[14]

Linfang Liu, Xianlong Fu, Yuncheng You. Pullback attractor in $H^{1}$ for nonautonomous stochastic reaction-diffusion equations on $\mathbb{R}^n$. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3629-3651. doi: 10.3934/dcdsb.2017143

[15]

Yangrong Li, Lianbing She, Jinyan Yin. Longtime robustness and semi-uniform compactness of a pullback attractor via nonautonomous PDE. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1535-1557. doi: 10.3934/dcdsb.2018058

[16]

Saugata Bandyopadhyay, Bernard Dacorogna, Olivier Kneuss. The Pullback equation for degenerate forms. Discrete & Continuous Dynamical Systems - A, 2010, 27 (2) : 657-691. doi: 10.3934/dcds.2010.27.657

[17]

Boris Kolev. Local well-posedness of the EPDiff equation: A survey. Journal of Geometric Mechanics, 2017, 9 (2) : 167-189. doi: 10.3934/jgm.2017007

[18]

Jerry Bona, Nikolay Tzvetkov. Sharp well-posedness results for the BBM equation. Discrete & Continuous Dynamical Systems - A, 2009, 23 (4) : 1241-1252. doi: 10.3934/dcds.2009.23.1241

[19]

Nils Strunk. Well-posedness for the supercritical gKdV equation. Communications on Pure & Applied Analysis, 2014, 13 (2) : 527-542. doi: 10.3934/cpaa.2014.13.527

[20]

A. Alexandrou Himonas, Curtis Holliman. On well-posedness of the Degasperis-Procesi equation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (2) : 469-488. doi: 10.3934/dcds.2011.31.469

2018 Impact Factor: 1.048

Metrics

  • PDF downloads (31)
  • HTML views (48)
  • Cited by (0)

Other articles
by authors

[Back to Top]