June  2020, 9(2): 469-486. doi: 10.3934/eect.2020020

Robust attractors for a Kirchhoff-Boussinesq type equation

1. 

School of Mathematics and Statistics, Zhengzhou University, No.100, Science Road, Zhengzhou 450001, China

2. 

College of Science, Zhongyuan University of Technology, No.41, Zhongyuan Road, Zhengzhou 450007, China

* Corresponding author: Zhijian Yang

Received  October 2018 Revised  January 2019 Published  December 2019

Fund Project: The authors are supported by NNSF of China (Grant No. 11671367)

The paper studies the existence of the pullback attractors and robust pullback exponential attractors for a Kirchhoff-Boussinesq type equation: $ u_{tt}-\Delta u_{t}+\Delta^{2} u = div\Big\{\frac{\nabla u}{\sqrt{1+|\nabla u|^{2}}}\Big\}+\Delta g(u)+f(x,t) $. We show that when the growth exponent $ p $ of the nonlinearity $ g(u) $ is up to the critical range: $ 1\leq p\leq p^*\equiv\frac{N+2}{(N-2)^{+}} $, (ⅰ) the IBVP of the equation is well-posed, and its solution has additionally global regularity when $ t>\tau $; (ⅱ) the related dynamical process $ \{U_f(t,\tau)\} $ has a pullback attractor; (ⅲ) in particular, when $ 1\leq p< p^* $, the process $ \{U_f(t,\tau)\} $ has a family of pullback exponential attractors, which is stable with respect to the perturbation $ f\in \Sigma $ (the sign space).

Citation: Zhijian Yang, Na Feng, Yanan Li. Robust attractors for a Kirchhoff-Boussinesq type equation. Evolution Equations & Control Theory, 2020, 9 (2) : 469-486. doi: 10.3934/eect.2020020
References:
[1]

J. L. Bona and R. L. Sachs, Global existence of smooth solutions and stability of solitary waves for a generalized Boussinesq equation, Comm. Math. Phys., 118 (1988), 15-29.  doi: 10.1007/BF01218475.  Google Scholar

[2]

A. N. CarvalhoI. A. Langa and J. C. Robinson, On the continuity of pullback attractors for evolution processes, Nonlinear Anal., 71 (2009), 1812-1824.  doi: 10.1016/j.na.2009.01.016.  Google Scholar

[3]

A. N. Carvalho, I. A. Langa and J. C. Robinson, Attractors for Infinite-Dimensional Non-Autonomous Dynamical Systems, Applied Mathematical Sciences, 182. Springer, New York, 2013. doi: 10.1007/978-1-4614-4581-4.  Google Scholar

[4]

A. N. Carvalho and S. Sonner, Pullback exponential attractors for evolution processes in Banach spaces: Theoretical result, Commun. Pure Appl. Anal., 12 (2013), 3047-3071.  doi: 10.3934/cpaa.2013.12.3047.  Google Scholar

[5]

A. N. Carvalho and S. Sonner, Pullback exponential attractors for evolution processes in Banach spaces: Properties and applications, Commun. Pure Appl. Anal., 13 (2014), 1141-1165.  doi: 10.3934/cpaa.2014.13.1141.  Google Scholar

[6]

I. Chueshov and I. Lasiecka, Existence, uniqueness of weak solutions and global attractors for a class of 2D Kirchhoff-Boussinesq models, Discrete Contin. Dyn. Syst., 15 (2006), 777-809.  doi: 10.3934/dcds.2006.15.777.  Google Scholar

[7]

I. Chueshov and I. Lasiecka, Long-time behavior of second order evolution equations with nonlinear damping, Mem. Amer. Math. Soc., 195 (2008). doi: 10.1090/memo/0912.  Google Scholar

[8]

I. Chueshov and I. Lasiecka, On global attractor for 2D Kirchhoff-Boussinesq model with supercritical nonlinearity, Comm. Partial Differential Equations, 36 (2011), 67-69.  doi: 10.1080/03605302.2010.484472.  Google Scholar

[9]

I. Chueshov, Long-time dynamics of Kirchhoff wave models with strong nonlinear damping, J. Differential Equations, 252 (2012), 1229-1262.  doi: 10.1016/j.jde.2011.08.022.  Google Scholar

[10]

R. Czaja and M. A. Efendiev, Pullback exponential attractors for nonautonomous equations Part Ⅰ: Semilinear parabolic equations, J. Math. Anal. Appl., 381 (2011), 748-765.  doi: 10.1016/j.jmaa.2011.03.053.  Google Scholar

[11]

P. Y. DingZ. J. Yang and Y. N. Li, Global attractor of the Kirchhoff wave models with strong nonlinear damping, Appl. Math. Letters, 76 (2018), 40-45.  doi: 10.1016/j.aml.2017.07.008.  Google Scholar

[12]

M. A. EfendievA. Miranville and S. Zelik, Exponential attractors and finite-dimensional reduction for nonautonomous dynamical systems, Proc. Roy. Soc. Edinburgh Sect. A, 135 (2005), 703-730.  doi: 10.1017/S030821050000408X.  Google Scholar

[13]

M. A. EfendievY. Yamamoto and A. Yagi, Exponential attractors for nonautonomous dynamical systems, J. Math. Soc. Japan, 63 (2011), 647-673.  doi: 10.2969/jmsj/06320647.  Google Scholar

[14]

M. GrasselliG. Schimperna and S. Zelik, On the 2D Cahn-Hilliard equation with inertial term, Comm. Partial Differential Equations, 34 (2009), 137-170.  doi: 10.1080/03605300802608247.  Google Scholar

[15]

M. GrasselliG. SchimpernaA. Segatti and S. Zelik, On the 3D Cahn-Hilliard equation with inertial term, J. Evol. Equ., 9 (2009), 371-404.  doi: 10.1007/s00028-009-0017-7.  Google Scholar

[16]

V. Kalantarov and S. Zelik, Finite-dimensional attractors for the quasi-linear strongly damped wave equation, J. Differential Equations, 247 (2009), 1120-1155.  doi: 10.1016/j.jde.2009.04.010.  Google Scholar

[17]

S. Kawashima and Y. Shibata, Global existence and exponential stability of small solutions to nonlinear viscoelasticity, Comm. Math. Phys., 148 (1992), 189-208.  doi: 10.1007/BF02102372.  Google Scholar

[18]

K. KobayashiH. Pecher and Y. Shibata, On a global in time existence theorem of smooth solutions to a nonlinear wave equation with viscosity, Math. Ann., 296 (1993), 215-234.  doi: 10.1007/BF01445103.  Google Scholar

[19]

L. A. LangaA. Miranville and J. Real, Pullback exponential attractors, Discrete Contin. Dyn. Syst., 26 (2010), 1329-1357.  doi: 10.3934/dcds.2010.26.1329.  Google Scholar

[20]

J. Lagnese and J. L. Lions, Modeling Analysis and Control of Thin Plates, Recherches en Mathématiques Appliquées [Research in Applied Mathematics], 6. Masson, Paris, 1988.  Google Scholar

[21]

J. E. Lagnese, Boundary Stabilization of Thin Plates, SIAM Studies in Applied Mathematics, 10. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1989. doi: 10.1137/1.9781611970821.  Google Scholar

[22]

F. Linares, Global existence of small solutions for a generalized Boussinesq equation, J. Differential Equations, 106 (1993), 257-293.  doi: 10.1006/jdeq.1993.1108.  Google Scholar

[23]

T. F. Ma and M. L. Pelicer, Attractors for weakly damped beam equation with $p$-Laplacian, Discrete Contin. Dyn. Syst. 2013, Dynamical Systems, Differential Equations and Applications. 9th AIMS Conference. Suppl., 34 (2013), 525-534.  doi: 10.3934/proc.2013.2013.525.  Google Scholar

[24]

M. Nakao, Energy decay for the quasilinear wave equation with viscosity, Math. Z., 219 (1995), 289-299.  doi: 10.1007/BF02572366.  Google Scholar

[25]

J. Simon, Compact sets in the space $L^{p}(0, T;B)$, Ann. Mat. Pura Appl., 146 (1987), 65-96.  doi: 10.1007/BF01762360.  Google Scholar

[26]

C. Y. SunD. M. Cao and J. Q. Duan, Non-autonomous dynamics of wave equations with nonlinear damping and critical nonlinearity, Nonlinearity, 19 (2006), 2645-2665.  doi: 10.1088/0951-7715/19/11/008.  Google Scholar

[27]

V. Varlamov, Eigenfunction expansion method and the long-time asymptotics for the damped Boussinesq equation, Discrete Contin. Dynam. Systems, 7 (2001), 675-702.  doi: 10.3934/dcds.2001.7.675.  Google Scholar

[28]

Y. H. Wang and C. K. Zhong, Upper semicontinuity of pullback attractors for nonautonomous Kirchhoff wave models, Discrete Contin. Dyn. Syst., 33 (2013), 3189-3209.  doi: 10.3934/dcds.2013.33.3189.  Google Scholar

[29]

Z. J. Yang, Finite-dimensional attractors for the Kirchhoff models, J. Math. Phys., 51 (2010), 092703, 25 pp. doi: 10.1063/1.3477939.  Google Scholar

[30]

Z. J. Yang, Longtime dynamics of the damped Boussinesq equations, J. Math. Anal. Appl., 399 (2013), 180-190.  doi: 10.1016/j.jmaa.2012.09.042.  Google Scholar

[31]

Z. J. Yang and Z. M. Liu, Longtime dynamics of the for the quasi-linear wave equations with structural damping and supercritical nonlinearity, Nonlinearity, 30 (2017), 1120-1145.  doi: 10.1088/1361-6544/aa599f.  Google Scholar

[32]

Z. J. Yang and P. Y. Ding, Longtime dynamics of Boussinesq type equations with fractional damping, Nonlinear Anal., 161 (2017), 108-130.  doi: 10.1016/j.na.2017.05.015.  Google Scholar

[33]

Z. J. Yang and Y. N. Li, Criteria on the existence and stability of pullback exponential attractors and their application to non-autonomous Kirchhoff wave models, Discrete Contin. Dyn. Syst., 38 (2018), 2629-2653.  doi: 10.3934/dcds.2018111.  Google Scholar

[34]

Z. J. YangP. Y. Ding and X. B. Liu, Attractors and their stability on Boussinesq type equations with gentle dissipation, Comm. Pure Appl. Anal., 18 (2019), 911-930.  doi: 10.3934/cpaa.2019044.  Google Scholar

[35]

X. G. YangZ. H. Fan and K. Li, Uniform attractor for non-autonomous Boussinesq-type equation with critical nonlinearity, Math. Meth. Appl. Sci., 39 (2016), 3075-3087.  doi: 10.1002/mma.3753.  Google Scholar

show all references

References:
[1]

J. L. Bona and R. L. Sachs, Global existence of smooth solutions and stability of solitary waves for a generalized Boussinesq equation, Comm. Math. Phys., 118 (1988), 15-29.  doi: 10.1007/BF01218475.  Google Scholar

[2]

A. N. CarvalhoI. A. Langa and J. C. Robinson, On the continuity of pullback attractors for evolution processes, Nonlinear Anal., 71 (2009), 1812-1824.  doi: 10.1016/j.na.2009.01.016.  Google Scholar

[3]

A. N. Carvalho, I. A. Langa and J. C. Robinson, Attractors for Infinite-Dimensional Non-Autonomous Dynamical Systems, Applied Mathematical Sciences, 182. Springer, New York, 2013. doi: 10.1007/978-1-4614-4581-4.  Google Scholar

[4]

A. N. Carvalho and S. Sonner, Pullback exponential attractors for evolution processes in Banach spaces: Theoretical result, Commun. Pure Appl. Anal., 12 (2013), 3047-3071.  doi: 10.3934/cpaa.2013.12.3047.  Google Scholar

[5]

A. N. Carvalho and S. Sonner, Pullback exponential attractors for evolution processes in Banach spaces: Properties and applications, Commun. Pure Appl. Anal., 13 (2014), 1141-1165.  doi: 10.3934/cpaa.2014.13.1141.  Google Scholar

[6]

I. Chueshov and I. Lasiecka, Existence, uniqueness of weak solutions and global attractors for a class of 2D Kirchhoff-Boussinesq models, Discrete Contin. Dyn. Syst., 15 (2006), 777-809.  doi: 10.3934/dcds.2006.15.777.  Google Scholar

[7]

I. Chueshov and I. Lasiecka, Long-time behavior of second order evolution equations with nonlinear damping, Mem. Amer. Math. Soc., 195 (2008). doi: 10.1090/memo/0912.  Google Scholar

[8]

I. Chueshov and I. Lasiecka, On global attractor for 2D Kirchhoff-Boussinesq model with supercritical nonlinearity, Comm. Partial Differential Equations, 36 (2011), 67-69.  doi: 10.1080/03605302.2010.484472.  Google Scholar

[9]

I. Chueshov, Long-time dynamics of Kirchhoff wave models with strong nonlinear damping, J. Differential Equations, 252 (2012), 1229-1262.  doi: 10.1016/j.jde.2011.08.022.  Google Scholar

[10]

R. Czaja and M. A. Efendiev, Pullback exponential attractors for nonautonomous equations Part Ⅰ: Semilinear parabolic equations, J. Math. Anal. Appl., 381 (2011), 748-765.  doi: 10.1016/j.jmaa.2011.03.053.  Google Scholar

[11]

P. Y. DingZ. J. Yang and Y. N. Li, Global attractor of the Kirchhoff wave models with strong nonlinear damping, Appl. Math. Letters, 76 (2018), 40-45.  doi: 10.1016/j.aml.2017.07.008.  Google Scholar

[12]

M. A. EfendievA. Miranville and S. Zelik, Exponential attractors and finite-dimensional reduction for nonautonomous dynamical systems, Proc. Roy. Soc. Edinburgh Sect. A, 135 (2005), 703-730.  doi: 10.1017/S030821050000408X.  Google Scholar

[13]

M. A. EfendievY. Yamamoto and A. Yagi, Exponential attractors for nonautonomous dynamical systems, J. Math. Soc. Japan, 63 (2011), 647-673.  doi: 10.2969/jmsj/06320647.  Google Scholar

[14]

M. GrasselliG. Schimperna and S. Zelik, On the 2D Cahn-Hilliard equation with inertial term, Comm. Partial Differential Equations, 34 (2009), 137-170.  doi: 10.1080/03605300802608247.  Google Scholar

[15]

M. GrasselliG. SchimpernaA. Segatti and S. Zelik, On the 3D Cahn-Hilliard equation with inertial term, J. Evol. Equ., 9 (2009), 371-404.  doi: 10.1007/s00028-009-0017-7.  Google Scholar

[16]

V. Kalantarov and S. Zelik, Finite-dimensional attractors for the quasi-linear strongly damped wave equation, J. Differential Equations, 247 (2009), 1120-1155.  doi: 10.1016/j.jde.2009.04.010.  Google Scholar

[17]

S. Kawashima and Y. Shibata, Global existence and exponential stability of small solutions to nonlinear viscoelasticity, Comm. Math. Phys., 148 (1992), 189-208.  doi: 10.1007/BF02102372.  Google Scholar

[18]

K. KobayashiH. Pecher and Y. Shibata, On a global in time existence theorem of smooth solutions to a nonlinear wave equation with viscosity, Math. Ann., 296 (1993), 215-234.  doi: 10.1007/BF01445103.  Google Scholar

[19]

L. A. LangaA. Miranville and J. Real, Pullback exponential attractors, Discrete Contin. Dyn. Syst., 26 (2010), 1329-1357.  doi: 10.3934/dcds.2010.26.1329.  Google Scholar

[20]

J. Lagnese and J. L. Lions, Modeling Analysis and Control of Thin Plates, Recherches en Mathématiques Appliquées [Research in Applied Mathematics], 6. Masson, Paris, 1988.  Google Scholar

[21]

J. E. Lagnese, Boundary Stabilization of Thin Plates, SIAM Studies in Applied Mathematics, 10. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1989. doi: 10.1137/1.9781611970821.  Google Scholar

[22]

F. Linares, Global existence of small solutions for a generalized Boussinesq equation, J. Differential Equations, 106 (1993), 257-293.  doi: 10.1006/jdeq.1993.1108.  Google Scholar

[23]

T. F. Ma and M. L. Pelicer, Attractors for weakly damped beam equation with $p$-Laplacian, Discrete Contin. Dyn. Syst. 2013, Dynamical Systems, Differential Equations and Applications. 9th AIMS Conference. Suppl., 34 (2013), 525-534.  doi: 10.3934/proc.2013.2013.525.  Google Scholar

[24]

M. Nakao, Energy decay for the quasilinear wave equation with viscosity, Math. Z., 219 (1995), 289-299.  doi: 10.1007/BF02572366.  Google Scholar

[25]

J. Simon, Compact sets in the space $L^{p}(0, T;B)$, Ann. Mat. Pura Appl., 146 (1987), 65-96.  doi: 10.1007/BF01762360.  Google Scholar

[26]

C. Y. SunD. M. Cao and J. Q. Duan, Non-autonomous dynamics of wave equations with nonlinear damping and critical nonlinearity, Nonlinearity, 19 (2006), 2645-2665.  doi: 10.1088/0951-7715/19/11/008.  Google Scholar

[27]

V. Varlamov, Eigenfunction expansion method and the long-time asymptotics for the damped Boussinesq equation, Discrete Contin. Dynam. Systems, 7 (2001), 675-702.  doi: 10.3934/dcds.2001.7.675.  Google Scholar

[28]

Y. H. Wang and C. K. Zhong, Upper semicontinuity of pullback attractors for nonautonomous Kirchhoff wave models, Discrete Contin. Dyn. Syst., 33 (2013), 3189-3209.  doi: 10.3934/dcds.2013.33.3189.  Google Scholar

[29]

Z. J. Yang, Finite-dimensional attractors for the Kirchhoff models, J. Math. Phys., 51 (2010), 092703, 25 pp. doi: 10.1063/1.3477939.  Google Scholar

[30]

Z. J. Yang, Longtime dynamics of the damped Boussinesq equations, J. Math. Anal. Appl., 399 (2013), 180-190.  doi: 10.1016/j.jmaa.2012.09.042.  Google Scholar

[31]

Z. J. Yang and Z. M. Liu, Longtime dynamics of the for the quasi-linear wave equations with structural damping and supercritical nonlinearity, Nonlinearity, 30 (2017), 1120-1145.  doi: 10.1088/1361-6544/aa599f.  Google Scholar

[32]

Z. J. Yang and P. Y. Ding, Longtime dynamics of Boussinesq type equations with fractional damping, Nonlinear Anal., 161 (2017), 108-130.  doi: 10.1016/j.na.2017.05.015.  Google Scholar

[33]

Z. J. Yang and Y. N. Li, Criteria on the existence and stability of pullback exponential attractors and their application to non-autonomous Kirchhoff wave models, Discrete Contin. Dyn. Syst., 38 (2018), 2629-2653.  doi: 10.3934/dcds.2018111.  Google Scholar

[34]

Z. J. YangP. Y. Ding and X. B. Liu, Attractors and their stability on Boussinesq type equations with gentle dissipation, Comm. Pure Appl. Anal., 18 (2019), 911-930.  doi: 10.3934/cpaa.2019044.  Google Scholar

[35]

X. G. YangZ. H. Fan and K. Li, Uniform attractor for non-autonomous Boussinesq-type equation with critical nonlinearity, Math. Meth. Appl. Sci., 39 (2016), 3075-3087.  doi: 10.1002/mma.3753.  Google Scholar

[1]

Xinyu Mei, Yangmin Xiong, Chunyou Sun. Pullback attractor for a weakly damped wave equation with sup-cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 569-600. doi: 10.3934/dcds.2020270

[2]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[3]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[4]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[5]

Noufel Frikha, Valentin Konakov, Stéphane Menozzi. Well-posedness of some non-linear stable driven SDEs. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 849-898. doi: 10.3934/dcds.2020302

[6]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[7]

Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020354

[8]

Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020108

[9]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[10]

Zongyuan Li, Weinan Wang. Norm inflation for the Boussinesq system. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020353

[11]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[12]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[13]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[14]

Adrian Constantin, Darren G. Crowdy, Vikas S. Krishnamurthy, Miles H. Wheeler. Stuart-type polar vortices on a rotating sphere. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 201-215. doi: 10.3934/dcds.2020263

[15]

Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366

[16]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[17]

Meng Chen, Yong Hu, Matteo Penegini. On projective threefolds of general type with small positive geometric genus. Electronic Research Archive, , () : -. doi: 10.3934/era.2020117

[18]

Shun Zhang, Jianlin Jiang, Su Zhang, Yibing Lv, Yuzhen Guo. ADMM-type methods for generalized multi-facility Weber problem. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020171

[19]

Shengbing Deng, Tingxi Hu, Chun-Lei Tang. $ N- $Laplacian problems with critical double exponential nonlinearities. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 987-1003. doi: 10.3934/dcds.2020306

[20]

Manil T. Mohan. Global attractors, exponential attractors and determining modes for the three dimensional Kelvin-Voigt fluids with "fading memory". Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020105

2019 Impact Factor: 0.953

Metrics

  • PDF downloads (146)
  • HTML views (300)
  • Cited by (0)

Other articles
by authors

[Back to Top]