June  2020, 9(2): 509-533. doi: 10.3934/eect.2020022

Uniform stabilization of a wave equation with partial Dirichlet delayed control

1. 

School of Mathematics, Tianjin University, Tianjin 300354, China

2. 

Department of Mathematics and Statistics, Qinghai Nationalities University, Xining, Qinghai 810007, China

* Corresponding author: Xiaorui Wang

Received  November 2018 Revised  July 2019 Published  December 2019

Fund Project: This project is partially supported by the National Natural Science Foundation in China (NSFC 61773277), and partially supported by NSF of Qinghai Province (2017-ZJ-908)

In this paper, we consider the uniform stabilization of some high-dimensional wave equations with partial Dirichlet delayed control. Herein we design a parameterization feedback controller to stabilize the system. This is a new approach of controller design which overcomes the difficulty in stability analysis of the closed-loop system. The detailed procedure is as follows: At first we rewrite the system with partial Dirichlet delayed control into an equivalence cascaded system of a transport equation and a wave equation, and then we construct an exponentially stable target system; Further, we give the form of the parameterization feedback controller. To stabilize the system under consideration, we choose some appropriate kernel functions and define a bounded inverse linear transformation such that the closed-loop system is equivalent to the target system. Finally, we obtain the stability of closed-loop system by the stability of target system.

Citation: Xiaorui Wang, Genqi Xu. Uniform stabilization of a wave equation with partial Dirichlet delayed control. Evolution Equations & Control Theory, 2020, 9 (2) : 509-533. doi: 10.3934/eect.2020022
References:
[1]

K. Ammari, Dirichlet boundary stabilization of the wave equation, Asymptot. Anal., 30 (2002), 117-130.   Google Scholar

[2]

C. BardosG. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary, SIAM J. Control Optim., 30 (1992), 1024-1065.  doi: 10.1137/0330055.  Google Scholar

[3]

D. Bresch-Pietri and M. Krstic, Adaptive compensation of diffusion-advection actuator dynamics using boundary measurements, Proc. of the 2015 Conference on Decision and Control, (2015). doi: 10.1109/CDC.2015.7402378.  Google Scholar

[4]

G. Chen, Energy decay estimates and exact boundary valued controllability of the wave equation in a bounded domain, J. Math. Pure. Appl., 58 (1979), 249-273.   Google Scholar

[5]

G. Chen, A note on boundary stabilization of the wave equation, SIAM J. Control Optim., 19 (1981), 106-113.  doi: 10.1137/0319008.  Google Scholar

[6]

R. DatkoJ. Lagnese and M. P. Polis, An example on the effect of time delays in boundary feedback stabilization of wave equations, SIAM J. Control Optim., 24 (1986), 152-156.  doi: 10.1137/0324007.  Google Scholar

[7]

R. Datko, Not all feedback stabilized hyperbolic systems are robust with respect to small time delays in their feedbacks, SIAM J. Control Optim., 26 (1988), 697-713.  doi: 10.1137/0326040.  Google Scholar

[8]

R. Datko, Two examples of ill-posedness with respect to time delays revisited, IEEE Trans. Automat. Control, 42 (1997), 511-515.  doi: 10.1109/9.566660.  Google Scholar

[9]

B. Z. Guo and X. Zhang, The regularity of the wave equation with partial Dirichlet control and collocated observation, SIAM J. Control Optim., 44 (2005), 1598-1613.  doi: 10.1137/040610702.  Google Scholar

[10]

B. Z. Guo and Z. X. Zhang, Dirichlet boundary stabilization of the wave equation, ESAIM Control Optim. & Calc. Var., 13 (2007), 776-792.  doi: 10.1051/cocv:2007040.  Google Scholar

[11]

W. GuoH. C. Zhou and M. Krstic, Adaptive error feedback output regulation for 1D wave equation, Internat. J. Robust Nonlinear Control, 28 (2018), 4309-4329.   Google Scholar

[12]

Z. J. Han and G. Q. Xu, Output-based stabilization of Euler-Bernoulli beam with time-delay in boundary input, IMA J. Math. Control Inform., 31 (2014), 533-550.  doi: 10.1093/imamci/dnt030.  Google Scholar

[13]

I. LasieckaJ. L. Lions and R. Triggiani, Nonhomogeneous boundary value problems for second order hyperbolic operators, J. Math. Pures Appl., 65 (1986), 149-192.   Google Scholar

[14]

I. Lasiecka and R. Triggiani, Dirichlet boundary stabilization of the wave equation with damping feedback of finite range, J. Math. Anal. Appl., 97 (1983), 112-130.  doi: 10.1016/0022-247X(83)90241-X.  Google Scholar

[15]

I. Lasiecka and R. Triggiani, Uniform exponential energy decay of wave equations in a bounded region with $L_2 (0, +\infty; L_2(\Gamma))$-feedback control in the Dirichlet boundary conditions, J. Differential Equations, 66 (1987), 340-390.  doi: 10.1016/0022-0396(87)90025-8.  Google Scholar

[16]

W. Littman, Boundary Control Theory for hyperbolic and parabolic partial differential equations with constant coefficients, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 5 (1978), 567-580.   Google Scholar

[17]

X. F. Liu and G. Q. Xu, Exponential stabilization for Timoshenko beam with distributed delay in the boundary control, Abstr. Appl. Anal., (2013), Art. ID 726794, 15 pp. doi: 10.1155/2013/726794.  Google Scholar

[18]

X. F. Liu and G. Q. Xu, Exponential stabilization for Timoshenko beam with different delays in the boundary control, IMA J. Math. Control Inform., 34 (2017), 93-110.  doi: 10.1093/imamci/dnv036.  Google Scholar

[19]

C. A. McMillan, Stabilization of the wave equation with finite range Dirichlet boundary feedback, J. Math. Anal. Appl., 171 (1992), 139-155.  doi: 10.1016/0022-247X(92)90382-N.  Google Scholar

[20]

S. Nicaise and C. Pingotti, Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks, SIAM J. Control Optim., 45 (2006), 1561-1585.  doi: 10.1137/060648891.  Google Scholar

[21]

S. Nicaise and J. Valein, Stabilization of the wave equation on 1-d networks with a delay term in the nodal feedbacks, Netw. Heterog. Media, 2 (2007), 425-479.  doi: 10.3934/nhm.2007.2.425.  Google Scholar

[22]

S. Nicaise and C. Pingotti, Exponential stability of second order evolution equations with structural damping and dynamic boundary delay feedback, IMA J. Math. Control Inform., 28 (2011), 417-446.  doi: 10.1093/imamci/dnr012.  Google Scholar

[23]

S. Nicaise and C. Pignotti, Stabilization of second-order evolution equations with time delay, Math. Control Signals Systems, 26 (2014), 563-588.  doi: 10.1007/s00498-014-0130-1.  Google Scholar

[24]

S. Nicaise and C. Pignotti, Exponential stability of abstract evolution equations with time delay, J. Evol. Equ., 15 (2015), 107-129.  doi: 10.1007/s00028-014-0251-5.  Google Scholar

[25]

S. Nicaise and C. Pignotti, Stability of the wave equation with localized Kelvin-Voigt damping and boundary delay feedback, Discrete Contin. Dyn. Syst. Ser. S, 9 (2016), 791-813.  doi: 10.3934/dcdss.2016029.  Google Scholar

[26]

Z.-H. Ning and Q.-X. Yan, Stabilization of the wave equation with variable coefficients and a delay in dissipative boundary feedback, J. Math. Anal. Appl., 367 (2010), 167-173.  doi: 10.1016/j.jmaa.2009.12.058.  Google Scholar

[27]

C. Pignotti, A note on stabilization of locally damped wave equations with time delay, Systems Control Lett., 61 (2012), 92-97.  doi: 10.1016/j.sysconle.2011.09.016.  Google Scholar

[28]

Y. F. Shang and G. Q. Xu, Stabilization of an Euler-Bernoulli beam with input delay in the boundary control, Systems Control Lett., 61 (2012), 1069-1078.  doi: 10.1016/j.sysconle.2012.07.012.  Google Scholar

[29]

Y. F. Shang and G. Q. Xu, Dynamic feedback control and exponential stabilization of a compound system, J. Math. Anal. Appl., 422 (2015), 858-879.  doi: 10.1016/j.jmaa.2014.09.013.  Google Scholar

[30]

A. SmyshlyaevE. Cerpa and M. Krstic, Boundary stabilization of a 1-D wave equation with in-domain antidamping, SIAM J. Control Optim., 48 (2010), 4014-4031.  doi: 10.1137/080742646.  Google Scholar

[31]

R. Triggiani, Exact boundary controllability on $L^2(\Omega)\times H^{-1}(\Omega)$ of the wave equation with Dirichlet boundary control acting on a portion of the boundary $\partial\Omega$, and Related Problems, Appl. Math. Optim., 18 (1988), 241-277.  doi: 10.1007/BF01443625.  Google Scholar

[32]

H. Wang and G. Q. Xu, Exponential stabilization of 1-d wave equation with input delay, WSEAS Transactions on Mathematics, 12 (2013), 1001-1013.   Google Scholar

[33]

G. Q. XuS. P. Yung and L. K. Li, Stabilization of wave systems with input delay in the boundary control, ESAIM Control Optim. Calc. Var., 12 (2006), 770-785.  doi: 10.1051/cocv:2006021.  Google Scholar

[34]

G. Q. Xu and H. X. Wang, Stabilization of Timoshenko beam system with delay in the boundary control, Internat. J. Control, 86 (2013), 1165-1178.  doi: 10.1080/00207179.2013.787494.  Google Scholar

[35]

P. F. Yao, On the observability inequalities for the exact controllability of the wave equation with variable coefficients, SIAM J. Control Optim., 37 (1999), 1568-1599.  doi: 10.1137/S0363012997331482.  Google Scholar

[36]

P. F. Yao, Global smooth solutions for the quasilinear wave equation with boundary dissipation, J. Differential Equations, 241 (2007), 62-93.  doi: 10.1016/j.jde.2007.06.014.  Google Scholar

[37]

P. F. Yao, Energy decay for the Cauchy problem of the linear wave equation of variable coefficients with dissipation, Chin. Ann. Math. Ser. B, 31 2010, 59–70. doi: 10.1007/s11401-008-0421-2.  Google Scholar

[38]

P. F. Yao, Boundary controllability for the quasilinear wave equation, Appl. Math. Optim., 61 2010,191–233. doi: 10.1007/s00245-009-9088-7.  Google Scholar

show all references

References:
[1]

K. Ammari, Dirichlet boundary stabilization of the wave equation, Asymptot. Anal., 30 (2002), 117-130.   Google Scholar

[2]

C. BardosG. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary, SIAM J. Control Optim., 30 (1992), 1024-1065.  doi: 10.1137/0330055.  Google Scholar

[3]

D. Bresch-Pietri and M. Krstic, Adaptive compensation of diffusion-advection actuator dynamics using boundary measurements, Proc. of the 2015 Conference on Decision and Control, (2015). doi: 10.1109/CDC.2015.7402378.  Google Scholar

[4]

G. Chen, Energy decay estimates and exact boundary valued controllability of the wave equation in a bounded domain, J. Math. Pure. Appl., 58 (1979), 249-273.   Google Scholar

[5]

G. Chen, A note on boundary stabilization of the wave equation, SIAM J. Control Optim., 19 (1981), 106-113.  doi: 10.1137/0319008.  Google Scholar

[6]

R. DatkoJ. Lagnese and M. P. Polis, An example on the effect of time delays in boundary feedback stabilization of wave equations, SIAM J. Control Optim., 24 (1986), 152-156.  doi: 10.1137/0324007.  Google Scholar

[7]

R. Datko, Not all feedback stabilized hyperbolic systems are robust with respect to small time delays in their feedbacks, SIAM J. Control Optim., 26 (1988), 697-713.  doi: 10.1137/0326040.  Google Scholar

[8]

R. Datko, Two examples of ill-posedness with respect to time delays revisited, IEEE Trans. Automat. Control, 42 (1997), 511-515.  doi: 10.1109/9.566660.  Google Scholar

[9]

B. Z. Guo and X. Zhang, The regularity of the wave equation with partial Dirichlet control and collocated observation, SIAM J. Control Optim., 44 (2005), 1598-1613.  doi: 10.1137/040610702.  Google Scholar

[10]

B. Z. Guo and Z. X. Zhang, Dirichlet boundary stabilization of the wave equation, ESAIM Control Optim. & Calc. Var., 13 (2007), 776-792.  doi: 10.1051/cocv:2007040.  Google Scholar

[11]

W. GuoH. C. Zhou and M. Krstic, Adaptive error feedback output regulation for 1D wave equation, Internat. J. Robust Nonlinear Control, 28 (2018), 4309-4329.   Google Scholar

[12]

Z. J. Han and G. Q. Xu, Output-based stabilization of Euler-Bernoulli beam with time-delay in boundary input, IMA J. Math. Control Inform., 31 (2014), 533-550.  doi: 10.1093/imamci/dnt030.  Google Scholar

[13]

I. LasieckaJ. L. Lions and R. Triggiani, Nonhomogeneous boundary value problems for second order hyperbolic operators, J. Math. Pures Appl., 65 (1986), 149-192.   Google Scholar

[14]

I. Lasiecka and R. Triggiani, Dirichlet boundary stabilization of the wave equation with damping feedback of finite range, J. Math. Anal. Appl., 97 (1983), 112-130.  doi: 10.1016/0022-247X(83)90241-X.  Google Scholar

[15]

I. Lasiecka and R. Triggiani, Uniform exponential energy decay of wave equations in a bounded region with $L_2 (0, +\infty; L_2(\Gamma))$-feedback control in the Dirichlet boundary conditions, J. Differential Equations, 66 (1987), 340-390.  doi: 10.1016/0022-0396(87)90025-8.  Google Scholar

[16]

W. Littman, Boundary Control Theory for hyperbolic and parabolic partial differential equations with constant coefficients, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 5 (1978), 567-580.   Google Scholar

[17]

X. F. Liu and G. Q. Xu, Exponential stabilization for Timoshenko beam with distributed delay in the boundary control, Abstr. Appl. Anal., (2013), Art. ID 726794, 15 pp. doi: 10.1155/2013/726794.  Google Scholar

[18]

X. F. Liu and G. Q. Xu, Exponential stabilization for Timoshenko beam with different delays in the boundary control, IMA J. Math. Control Inform., 34 (2017), 93-110.  doi: 10.1093/imamci/dnv036.  Google Scholar

[19]

C. A. McMillan, Stabilization of the wave equation with finite range Dirichlet boundary feedback, J. Math. Anal. Appl., 171 (1992), 139-155.  doi: 10.1016/0022-247X(92)90382-N.  Google Scholar

[20]

S. Nicaise and C. Pingotti, Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks, SIAM J. Control Optim., 45 (2006), 1561-1585.  doi: 10.1137/060648891.  Google Scholar

[21]

S. Nicaise and J. Valein, Stabilization of the wave equation on 1-d networks with a delay term in the nodal feedbacks, Netw. Heterog. Media, 2 (2007), 425-479.  doi: 10.3934/nhm.2007.2.425.  Google Scholar

[22]

S. Nicaise and C. Pingotti, Exponential stability of second order evolution equations with structural damping and dynamic boundary delay feedback, IMA J. Math. Control Inform., 28 (2011), 417-446.  doi: 10.1093/imamci/dnr012.  Google Scholar

[23]

S. Nicaise and C. Pignotti, Stabilization of second-order evolution equations with time delay, Math. Control Signals Systems, 26 (2014), 563-588.  doi: 10.1007/s00498-014-0130-1.  Google Scholar

[24]

S. Nicaise and C. Pignotti, Exponential stability of abstract evolution equations with time delay, J. Evol. Equ., 15 (2015), 107-129.  doi: 10.1007/s00028-014-0251-5.  Google Scholar

[25]

S. Nicaise and C. Pignotti, Stability of the wave equation with localized Kelvin-Voigt damping and boundary delay feedback, Discrete Contin. Dyn. Syst. Ser. S, 9 (2016), 791-813.  doi: 10.3934/dcdss.2016029.  Google Scholar

[26]

Z.-H. Ning and Q.-X. Yan, Stabilization of the wave equation with variable coefficients and a delay in dissipative boundary feedback, J. Math. Anal. Appl., 367 (2010), 167-173.  doi: 10.1016/j.jmaa.2009.12.058.  Google Scholar

[27]

C. Pignotti, A note on stabilization of locally damped wave equations with time delay, Systems Control Lett., 61 (2012), 92-97.  doi: 10.1016/j.sysconle.2011.09.016.  Google Scholar

[28]

Y. F. Shang and G. Q. Xu, Stabilization of an Euler-Bernoulli beam with input delay in the boundary control, Systems Control Lett., 61 (2012), 1069-1078.  doi: 10.1016/j.sysconle.2012.07.012.  Google Scholar

[29]

Y. F. Shang and G. Q. Xu, Dynamic feedback control and exponential stabilization of a compound system, J. Math. Anal. Appl., 422 (2015), 858-879.  doi: 10.1016/j.jmaa.2014.09.013.  Google Scholar

[30]

A. SmyshlyaevE. Cerpa and M. Krstic, Boundary stabilization of a 1-D wave equation with in-domain antidamping, SIAM J. Control Optim., 48 (2010), 4014-4031.  doi: 10.1137/080742646.  Google Scholar

[31]

R. Triggiani, Exact boundary controllability on $L^2(\Omega)\times H^{-1}(\Omega)$ of the wave equation with Dirichlet boundary control acting on a portion of the boundary $\partial\Omega$, and Related Problems, Appl. Math. Optim., 18 (1988), 241-277.  doi: 10.1007/BF01443625.  Google Scholar

[32]

H. Wang and G. Q. Xu, Exponential stabilization of 1-d wave equation with input delay, WSEAS Transactions on Mathematics, 12 (2013), 1001-1013.   Google Scholar

[33]

G. Q. XuS. P. Yung and L. K. Li, Stabilization of wave systems with input delay in the boundary control, ESAIM Control Optim. Calc. Var., 12 (2006), 770-785.  doi: 10.1051/cocv:2006021.  Google Scholar

[34]

G. Q. Xu and H. X. Wang, Stabilization of Timoshenko beam system with delay in the boundary control, Internat. J. Control, 86 (2013), 1165-1178.  doi: 10.1080/00207179.2013.787494.  Google Scholar

[35]

P. F. Yao, On the observability inequalities for the exact controllability of the wave equation with variable coefficients, SIAM J. Control Optim., 37 (1999), 1568-1599.  doi: 10.1137/S0363012997331482.  Google Scholar

[36]

P. F. Yao, Global smooth solutions for the quasilinear wave equation with boundary dissipation, J. Differential Equations, 241 (2007), 62-93.  doi: 10.1016/j.jde.2007.06.014.  Google Scholar

[37]

P. F. Yao, Energy decay for the Cauchy problem of the linear wave equation of variable coefficients with dissipation, Chin. Ann. Math. Ser. B, 31 2010, 59–70. doi: 10.1007/s11401-008-0421-2.  Google Scholar

[38]

P. F. Yao, Boundary controllability for the quasilinear wave equation, Appl. Math. Optim., 61 2010,191–233. doi: 10.1007/s00245-009-9088-7.  Google Scholar

[1]

Yanni Guo, Genqi Xu, Yansha Guo. Stabilization of the wave equation with interior input delay and mixed Neumann-Dirichlet boundary. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2491-2507. doi: 10.3934/dcdsb.2016057

[2]

Muhammad I. Mustafa. On the control of the wave equation by memory-type boundary condition. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 1179-1192. doi: 10.3934/dcds.2015.35.1179

[3]

Kim Dang Phung. Boundary stabilization for the wave equation in a bounded cylindrical domain. Discrete & Continuous Dynamical Systems - A, 2008, 20 (4) : 1057-1093. doi: 10.3934/dcds.2008.20.1057

[4]

Bopeng Rao, Laila Toufayli, Ali Wehbe. Stability and controllability of a wave equation with dynamical boundary control. Mathematical Control & Related Fields, 2015, 5 (2) : 305-320. doi: 10.3934/mcrf.2015.5.305

[5]

Shitao Liu. Recovery of the sound speed and initial displacement for the wave equation by means of a single Dirichlet boundary measurement. Evolution Equations & Control Theory, 2013, 2 (2) : 355-364. doi: 10.3934/eect.2013.2.355

[6]

Martin Gugat, Markus Dick. Time-delayed boundary feedback stabilization of the isothermal Euler equations with friction. Mathematical Control & Related Fields, 2011, 1 (4) : 469-491. doi: 10.3934/mcrf.2011.1.469

[7]

Behzad Azmi, Karl Kunisch. Receding horizon control for the stabilization of the wave equation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 449-484. doi: 10.3934/dcds.2018021

[8]

Martin Gugat, Günter Leugering, Ke Wang. Neumann boundary feedback stabilization for a nonlinear wave equation: A strict $H^2$-lyapunov function. Mathematical Control & Related Fields, 2017, 7 (3) : 419-448. doi: 10.3934/mcrf.2017015

[9]

Mohammad Akil, Ali Wehbe. Stabilization of multidimensional wave equation with locally boundary fractional dissipation law under geometric conditions. Mathematical Control & Related Fields, 2019, 9 (1) : 97-116. doi: 10.3934/mcrf.2019005

[10]

Piotr Kowalski. The existence of a solution for Dirichlet boundary value problem for a Duffing type differential inclusion. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2569-2580. doi: 10.3934/dcdsb.2014.19.2569

[11]

Lassaad Aloui, Moez Khenissi. Boundary stabilization of the wave and Schrödinger equations in exterior domains. Discrete & Continuous Dynamical Systems - A, 2010, 27 (3) : 919-934. doi: 10.3934/dcds.2010.27.919

[12]

Xu Zhang, Chuang Zheng, Enrique Zuazua. Time discrete wave equations: Boundary observability and control. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 571-604. doi: 10.3934/dcds.2009.23.571

[13]

Yaru Xie, Genqi Xu. Exponential stability of 1-d wave equation with the boundary time delay based on the interior control. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 557-579. doi: 10.3934/dcdss.2017028

[14]

Xiaoqiang Dai, Chao Yang, Shaobin Huang, Tao Yu, Yuanran Zhu. Finite time blow-up for a wave equation with dynamic boundary condition at critical and high energy levels in control systems. Electronic Research Archive, 2020, 28 (1) : 91-102. doi: 10.3934/era.2020006

[15]

Khadijah Sharaf. A perturbation result for a critical elliptic equation with zero Dirichlet boundary condition. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1691-1706. doi: 10.3934/dcds.2017070

[16]

Takeshi Taniguchi. Exponential boundary stabilization for nonlinear wave equations with localized damping and nonlinear boundary condition. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1571-1585. doi: 10.3934/cpaa.2017075

[17]

Kangsheng Liu, Xu Liu, Bopeng Rao. Eventual regularity of a wave equation with boundary dissipation. Mathematical Control & Related Fields, 2012, 2 (1) : 17-28. doi: 10.3934/mcrf.2012.2.17

[18]

Gen Nakamura, Michiyuki Watanabe. An inverse boundary value problem for a nonlinear wave equation. Inverse Problems & Imaging, 2008, 2 (1) : 121-131. doi: 10.3934/ipi.2008.2.121

[19]

Vesselin Petkov. Location of eigenvalues for the wave equation with dissipative boundary conditions. Inverse Problems & Imaging, 2016, 10 (4) : 1111-1139. doi: 10.3934/ipi.2016034

[20]

Ionuţ Munteanu. Exponential stabilization of the stochastic Burgers equation by boundary proportional feedback. Discrete & Continuous Dynamical Systems - A, 2019, 39 (4) : 2173-2185. doi: 10.3934/dcds.2019091

2019 Impact Factor: 0.953

Metrics

  • PDF downloads (168)
  • HTML views (344)
  • Cited by (0)

Other articles
by authors

[Back to Top]