• Previous Article
    Uniform attractors of 3D Navier-Stokes-Voigt equations with memory and singularly oscillating external forces
  • EECT Home
  • This Issue
  • Next Article
    Convergence of simultaneous distributed-boundary parabolic optimal control problems
doi: 10.3934/eect.2020023

Null controllability for a heat equation with dynamic boundary conditions and drift terms

Cadi Ayyad University, Faculty of Sciences Semlalia, LMDP, UMMISCO (IRD-UPMC) B.P. 2390, Marrakesh, Morocco

* Corresponding author: Lahcen Maniar

Received  December 2018 Revised  September 2019 Published  December 2019

We consider the heat equation in a bounded domain of $ \mathbb{R}^N $ with distributed control (supported on a small open subset) subject to dynamic boundary conditions of surface diffusion type and involving drift terms on the bulk and on the boundary. We prove that the system is null controllable at any time. The result is based on new Carleman estimates for this type of boundary conditions.

Citation: Abdelaziz Khoutaibi, Lahcen Maniar. Null controllability for a heat equation with dynamic boundary conditions and drift terms. Evolution Equations & Control Theory, doi: 10.3934/eect.2020023
References:
[1]

F. Alabau-BoussouiraP. Cannarsa and G. Fragnelli, Carleman estimates for degenerate parabolic operators with applications to null controllability, J. Evol. Equ., 6 (2006), 161-204.  doi: 10.1007/s00028-006-0222-6.  Google Scholar

[2]

F. Ammar KhodjaA. BenabdallahC. Dupaix and M. Gonzales-Burgos, A Kalman rank condition for the localized distributed controllability of a class of linear parabolic systems, J. Evol. Equ., 9 (2009), 267-291.  doi: 10.1007/s00028-009-0008-8.  Google Scholar

[3]

D. BotheJ. Prüss and G. Simonett, Well-posedness of a two-phase flow with soluble surfactant, Nonlinear elliptic and parabolic problems, Progr. Nonlinear Differential Equations Appl., Birkhäuser, Basel, 64 (2005), 37-61.  doi: 10.1007/3-7643-7385-7_3.  Google Scholar

[4]

D. ChaeO. Y. Imanuvilov and S. M. Kim, Exact controllability for semilinear parabolic equations with Neumann boundary conditions, J. Dynam. Control Systems, 2 (1996), 449-483.  doi: 10.1007/BF02254698.  Google Scholar

[5]

R. DenkJ. Prüss and R. Zacher, Maximal $L_p$-regularity of parabolic problems with boundary dynamics of relaxation type, J. Funct. Anal., 255 (2008), 3149-3187.  doi: 10.1016/j.jfa.2008.07.012.  Google Scholar

[6]

A. DoubovaE. Fernández-CaraM. González-Burgos and E. Zuazua, On the controllability of parabolic systems with a nonlinear term involving the state and the gradient, SIAM J. Control Optim., 41 (2002), 798-819.  doi: 10.1137/S0363012901386465.  Google Scholar

[7]

A. F. M. ter ElstM. Meyries and J. Rehberg, Parabolic equations with dynamical boundary conditions and source terms on interfaces, Ann. Mat. Pura Appl., 193 (2014), 1295-1318.  doi: 10.1007/s10231-013-0329-7.  Google Scholar

[8]

L. C. Evans, Partial Differential Equations, Vol. 19 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, second edition, 2010. Google Scholar

[9]

J. Z. Farkas and P. Hinow, Physiologically structured populations with diffusion and dynamic boundary conditions, Math. Biosci. Eng., 8 (2011), 503-513.  doi: 10.3934/mbe.2011.8.503.  Google Scholar

[10]

A. FaviniJ. A. GoldsteinG. R. Goldstein and S. Romanelli, The heat equation with generalized Wentzell boundary condition, J. Evol. Equ., 2 (2002), 1-19.  doi: 10.1007/s00028-002-8077-y.  Google Scholar

[11]

E. Fernndez-Cara and S. Guerrero, Global Carleman inequalities for parabolic systems and applications to controllability, SIAM J. Control Optim., 45 (2006), 1399-1446.  doi: 10.1137/S0363012904439696.  Google Scholar

[12]

E. Fernández-CaraM. González-BurgosS. Guerrero and J.-P. Puel, Null controllability of the heat equation with Fourier boundary conditions: The linear case, ESAIM Control Optim. Calc. Var., 12 (2006), 442-465.  doi: 10.1051/cocv:2006010.  Google Scholar

[13]

E. Fernández-CaraM. González-BurgosS. Guerrero and J.-P. Puel, Exact controllability to the trajectories of the heat equation with Fourier boundary conditions: The semilinear case, ESAIM Control Optim. Calc. Var., 12 (2006), 466-483.  doi: 10.1051/cocv:2006011.  Google Scholar

[14]

E. Fernandez-Cara and E. Zuazua, Null and approximate controllability for weakly blowing up semilinear heat equations, Ann. Inst. H. Poincaré Anal. Non Lináire, 17 (2000), 583-616.  doi: 10.1016/S0294-1449(00)00117-7.  Google Scholar

[15]

A. V. Fursikov and O. Y. Imanuvilov, Controllability of Evolution Equations, Lecture Notes Series, 34. Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul, 1996.  Google Scholar

[16]

C. G. Gal and L. Tebou, Carleman inequalities for wave equations with oscillatory boundary conditions and application, SIAM J. Control Optim., 55 (2017), 324-364.  doi: 10.1137/15M1032211.  Google Scholar

[17]

C. G. Gal, On a class of degenerate parabolic equations with dynamic boundary conditions, J. Differential Equations, 253 (2012), 126-166.  doi: 10.1016/j.jde.2012.02.010.  Google Scholar

[18]

C. G. Gal and M. Grasselli, The non-isothermal Allen-Cahn equation with dynamic boundary conditions, Discrete Contin. Dyn. Syst., 22 (2008), 1009-1040.  doi: 10.3934/dcds.2008.22.1009.  Google Scholar

[19]

C. G. Gal and M. Meyries, Nonlinear elliptic problems with dynamical boundary conditions of reactive and reactive-diffusive type, Proc. Lond. Math. Soc., 108 (2014), 1351-1380.  doi: 10.1112/plms/pdt057.  Google Scholar

[20]

A. Glitzky, An electronic model for solar cells including active interfaces and energy resolved defect densities, SIAM J. Math. Anal., 44 (2012), 3874-3900.  doi: 10.1137/110858847.  Google Scholar

[21]

A. Glitzky and A. Mielke, A gradient structure for systems coupling reaction-diffusion effects in bulk and interfaces, Z. Angew. Math. Phys., 64 (2013), 29-52.  doi: 10.1007/s00033-012-0207-y.  Google Scholar

[22]

G. R. Goldstein, Derivation and physical interpretation of general boundary conditions, Adv. Differential Equations, 11 (2006), 457-480.   Google Scholar

[23]

G. R. Goldstein, Derivation of dynamical boundary conditions, Adv. Differential Equations, 11 (2006), 457-480.   Google Scholar

[24]

D. HömbergK. Krumbiegel and J. Rehberg, Optimal control of a parabolic equation with dynamic boundary condition, Appl. Math. Optim., 67 (2013), 3-31.  doi: 10.1007/s00245-012-9178-9.  Google Scholar

[25]

O. Y. Imanuvilov, Controllability of parabolic equations, Sb. Math., 186 (1995), 879-900.   Google Scholar

[26]

O. Y. Imanuvilov and M. Yamamoto, Carleman estimate for a parabolic equation in a Sobolev space of negative order and its applications, Control of Nonlinear Distributed Parameter Systems (College Station, TX, 1999), Lecture Notes in Pure and Appl. Math., Dekker, New York, 218 (2001), 113-137.   Google Scholar

[27]

J. B. Kennedy, On the isoperimetric problem for the laplacian with robin and wentzell boundary conditions, Bull. Aust. Math. Soc., 82 (2010), 348-350.  doi: 10.1017/S0004972710000456.  Google Scholar

[28]

A. Khoutaibi, L. Maniar, D. Mugnolo and A. Rhandi, Parabolic equation with dynamic boundary conditions and drift terms, preprint, arXiv: 1909.02377.pdf. Google Scholar

[29]

M. Kumpf and G. Nickel, Dynamic boundary conditions and boundary control for the one-dimensional heat equation, J. Dynam. Control Systems, 10 (2004), 213-225.  doi: 10.1023/B:JODS.0000024122.71407.83.  Google Scholar

[30]

R. E. Langer, A problem in diffusion or in the flow of heat for a solid in contact with a fluid, Tohoku Math. J., 35 (1932), 260-275.   Google Scholar

[31]

G. Lebeau and L. Robbiano, Contrôle exact de l'équation de la chaleur, Comm. Partial Differential Equations, 20 (1995), 335-356.  doi: 10.1080/03605309508821097.  Google Scholar

[32]

L. ManiarM. Meyries and R. Schnaubelt, Null controllability for parabolic problems with dynamic boundary conditions of reactive-diffusive type, Evol. Equ. Control Theory, 6 (2017), 381-407.  doi: 10.3934/eect.2017020.  Google Scholar

[33]

K. Mauffrey, Contrôlabilité de Systèmes Gouvernés par Des équations aux Dérivées Partielles, Ph. D thesis, University of Franche-Comté, 2013. Google Scholar

[34]

M. Meyries, Maximal Regularity in Weighted Spaces, Nonlinear Boundary Conditions, and Global Attractors, Ph. D. thesis, Karlsruhe Institute of Technology, 2010. Google Scholar

[35]

A. Miranville and S. Zelik, Exponential attractors for the Cahn-Hilliard equation with dynamic boundary conditions, Math. Methods Appl. Sci., 28 (2005), 709-735.  doi: 10.1002/mma.590.  Google Scholar

[36]

A. Pazy, Semigroups of Linear Operators and Application to Partial Differential Equations, Applied Mathematical Sciences, 44. Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[37]

J. Prüss and R. Schnaubelt, Solvability and maximal regularity of parabolic evolution equations with coefficients continuous in time, J. Math. Anal. Appl., 256 (2001), 405-430.  doi: 10.1006/jmaa.2000.7247.  Google Scholar

[38]

J. Sprekels and H. Wu, A note on parabolic equation with nonlinear dynamical boundary condition, Nonlinear Anal., 72 (2006), 3028-3048.  doi: 10.1016/j.na.2009.11.043.  Google Scholar

[39]

M. E. Taylor, Partial Differential Equations. Basic Theory, Texts in Applied Mathematics, Springer-Verlag, New York, 1996.  Google Scholar

[40]

H. Triebel, Interpolation Theory, Function Spaces, and Differential Operators, North-Holland Mathematical Library, 18. North-Holland Publishing Co., Amsterdam-New York, 1978.  Google Scholar

[41]

J. L. Vázquez and E. Vitillaro, Heat equation with dynamical boundary conditions of reactive-diffusive type, J. Differential Equations, 250 (2011), 2143-2161.  doi: 10.1016/j.jde.2010.12.012.  Google Scholar

[42]

J. Zabczyk, Mathematical Control Theory: An Introduction, Modern Birkhäuser Classics. Birkhüuser Boston Inc., Boston, MA, 2008. doi: 10.1007/978-0-8176-4733-9.  Google Scholar

show all references

References:
[1]

F. Alabau-BoussouiraP. Cannarsa and G. Fragnelli, Carleman estimates for degenerate parabolic operators with applications to null controllability, J. Evol. Equ., 6 (2006), 161-204.  doi: 10.1007/s00028-006-0222-6.  Google Scholar

[2]

F. Ammar KhodjaA. BenabdallahC. Dupaix and M. Gonzales-Burgos, A Kalman rank condition for the localized distributed controllability of a class of linear parabolic systems, J. Evol. Equ., 9 (2009), 267-291.  doi: 10.1007/s00028-009-0008-8.  Google Scholar

[3]

D. BotheJ. Prüss and G. Simonett, Well-posedness of a two-phase flow with soluble surfactant, Nonlinear elliptic and parabolic problems, Progr. Nonlinear Differential Equations Appl., Birkhäuser, Basel, 64 (2005), 37-61.  doi: 10.1007/3-7643-7385-7_3.  Google Scholar

[4]

D. ChaeO. Y. Imanuvilov and S. M. Kim, Exact controllability for semilinear parabolic equations with Neumann boundary conditions, J. Dynam. Control Systems, 2 (1996), 449-483.  doi: 10.1007/BF02254698.  Google Scholar

[5]

R. DenkJ. Prüss and R. Zacher, Maximal $L_p$-regularity of parabolic problems with boundary dynamics of relaxation type, J. Funct. Anal., 255 (2008), 3149-3187.  doi: 10.1016/j.jfa.2008.07.012.  Google Scholar

[6]

A. DoubovaE. Fernández-CaraM. González-Burgos and E. Zuazua, On the controllability of parabolic systems with a nonlinear term involving the state and the gradient, SIAM J. Control Optim., 41 (2002), 798-819.  doi: 10.1137/S0363012901386465.  Google Scholar

[7]

A. F. M. ter ElstM. Meyries and J. Rehberg, Parabolic equations with dynamical boundary conditions and source terms on interfaces, Ann. Mat. Pura Appl., 193 (2014), 1295-1318.  doi: 10.1007/s10231-013-0329-7.  Google Scholar

[8]

L. C. Evans, Partial Differential Equations, Vol. 19 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, second edition, 2010. Google Scholar

[9]

J. Z. Farkas and P. Hinow, Physiologically structured populations with diffusion and dynamic boundary conditions, Math. Biosci. Eng., 8 (2011), 503-513.  doi: 10.3934/mbe.2011.8.503.  Google Scholar

[10]

A. FaviniJ. A. GoldsteinG. R. Goldstein and S. Romanelli, The heat equation with generalized Wentzell boundary condition, J. Evol. Equ., 2 (2002), 1-19.  doi: 10.1007/s00028-002-8077-y.  Google Scholar

[11]

E. Fernndez-Cara and S. Guerrero, Global Carleman inequalities for parabolic systems and applications to controllability, SIAM J. Control Optim., 45 (2006), 1399-1446.  doi: 10.1137/S0363012904439696.  Google Scholar

[12]

E. Fernández-CaraM. González-BurgosS. Guerrero and J.-P. Puel, Null controllability of the heat equation with Fourier boundary conditions: The linear case, ESAIM Control Optim. Calc. Var., 12 (2006), 442-465.  doi: 10.1051/cocv:2006010.  Google Scholar

[13]

E. Fernández-CaraM. González-BurgosS. Guerrero and J.-P. Puel, Exact controllability to the trajectories of the heat equation with Fourier boundary conditions: The semilinear case, ESAIM Control Optim. Calc. Var., 12 (2006), 466-483.  doi: 10.1051/cocv:2006011.  Google Scholar

[14]

E. Fernandez-Cara and E. Zuazua, Null and approximate controllability for weakly blowing up semilinear heat equations, Ann. Inst. H. Poincaré Anal. Non Lináire, 17 (2000), 583-616.  doi: 10.1016/S0294-1449(00)00117-7.  Google Scholar

[15]

A. V. Fursikov and O. Y. Imanuvilov, Controllability of Evolution Equations, Lecture Notes Series, 34. Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul, 1996.  Google Scholar

[16]

C. G. Gal and L. Tebou, Carleman inequalities for wave equations with oscillatory boundary conditions and application, SIAM J. Control Optim., 55 (2017), 324-364.  doi: 10.1137/15M1032211.  Google Scholar

[17]

C. G. Gal, On a class of degenerate parabolic equations with dynamic boundary conditions, J. Differential Equations, 253 (2012), 126-166.  doi: 10.1016/j.jde.2012.02.010.  Google Scholar

[18]

C. G. Gal and M. Grasselli, The non-isothermal Allen-Cahn equation with dynamic boundary conditions, Discrete Contin. Dyn. Syst., 22 (2008), 1009-1040.  doi: 10.3934/dcds.2008.22.1009.  Google Scholar

[19]

C. G. Gal and M. Meyries, Nonlinear elliptic problems with dynamical boundary conditions of reactive and reactive-diffusive type, Proc. Lond. Math. Soc., 108 (2014), 1351-1380.  doi: 10.1112/plms/pdt057.  Google Scholar

[20]

A. Glitzky, An electronic model for solar cells including active interfaces and energy resolved defect densities, SIAM J. Math. Anal., 44 (2012), 3874-3900.  doi: 10.1137/110858847.  Google Scholar

[21]

A. Glitzky and A. Mielke, A gradient structure for systems coupling reaction-diffusion effects in bulk and interfaces, Z. Angew. Math. Phys., 64 (2013), 29-52.  doi: 10.1007/s00033-012-0207-y.  Google Scholar

[22]

G. R. Goldstein, Derivation and physical interpretation of general boundary conditions, Adv. Differential Equations, 11 (2006), 457-480.   Google Scholar

[23]

G. R. Goldstein, Derivation of dynamical boundary conditions, Adv. Differential Equations, 11 (2006), 457-480.   Google Scholar

[24]

D. HömbergK. Krumbiegel and J. Rehberg, Optimal control of a parabolic equation with dynamic boundary condition, Appl. Math. Optim., 67 (2013), 3-31.  doi: 10.1007/s00245-012-9178-9.  Google Scholar

[25]

O. Y. Imanuvilov, Controllability of parabolic equations, Sb. Math., 186 (1995), 879-900.   Google Scholar

[26]

O. Y. Imanuvilov and M. Yamamoto, Carleman estimate for a parabolic equation in a Sobolev space of negative order and its applications, Control of Nonlinear Distributed Parameter Systems (College Station, TX, 1999), Lecture Notes in Pure and Appl. Math., Dekker, New York, 218 (2001), 113-137.   Google Scholar

[27]

J. B. Kennedy, On the isoperimetric problem for the laplacian with robin and wentzell boundary conditions, Bull. Aust. Math. Soc., 82 (2010), 348-350.  doi: 10.1017/S0004972710000456.  Google Scholar

[28]

A. Khoutaibi, L. Maniar, D. Mugnolo and A. Rhandi, Parabolic equation with dynamic boundary conditions and drift terms, preprint, arXiv: 1909.02377.pdf. Google Scholar

[29]

M. Kumpf and G. Nickel, Dynamic boundary conditions and boundary control for the one-dimensional heat equation, J. Dynam. Control Systems, 10 (2004), 213-225.  doi: 10.1023/B:JODS.0000024122.71407.83.  Google Scholar

[30]

R. E. Langer, A problem in diffusion or in the flow of heat for a solid in contact with a fluid, Tohoku Math. J., 35 (1932), 260-275.   Google Scholar

[31]

G. Lebeau and L. Robbiano, Contrôle exact de l'équation de la chaleur, Comm. Partial Differential Equations, 20 (1995), 335-356.  doi: 10.1080/03605309508821097.  Google Scholar

[32]

L. ManiarM. Meyries and R. Schnaubelt, Null controllability for parabolic problems with dynamic boundary conditions of reactive-diffusive type, Evol. Equ. Control Theory, 6 (2017), 381-407.  doi: 10.3934/eect.2017020.  Google Scholar

[33]

K. Mauffrey, Contrôlabilité de Systèmes Gouvernés par Des équations aux Dérivées Partielles, Ph. D thesis, University of Franche-Comté, 2013. Google Scholar

[34]

M. Meyries, Maximal Regularity in Weighted Spaces, Nonlinear Boundary Conditions, and Global Attractors, Ph. D. thesis, Karlsruhe Institute of Technology, 2010. Google Scholar

[35]

A. Miranville and S. Zelik, Exponential attractors for the Cahn-Hilliard equation with dynamic boundary conditions, Math. Methods Appl. Sci., 28 (2005), 709-735.  doi: 10.1002/mma.590.  Google Scholar

[36]

A. Pazy, Semigroups of Linear Operators and Application to Partial Differential Equations, Applied Mathematical Sciences, 44. Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[37]

J. Prüss and R. Schnaubelt, Solvability and maximal regularity of parabolic evolution equations with coefficients continuous in time, J. Math. Anal. Appl., 256 (2001), 405-430.  doi: 10.1006/jmaa.2000.7247.  Google Scholar

[38]

J. Sprekels and H. Wu, A note on parabolic equation with nonlinear dynamical boundary condition, Nonlinear Anal., 72 (2006), 3028-3048.  doi: 10.1016/j.na.2009.11.043.  Google Scholar

[39]

M. E. Taylor, Partial Differential Equations. Basic Theory, Texts in Applied Mathematics, Springer-Verlag, New York, 1996.  Google Scholar

[40]

H. Triebel, Interpolation Theory, Function Spaces, and Differential Operators, North-Holland Mathematical Library, 18. North-Holland Publishing Co., Amsterdam-New York, 1978.  Google Scholar

[41]

J. L. Vázquez and E. Vitillaro, Heat equation with dynamical boundary conditions of reactive-diffusive type, J. Differential Equations, 250 (2011), 2143-2161.  doi: 10.1016/j.jde.2010.12.012.  Google Scholar

[42]

J. Zabczyk, Mathematical Control Theory: An Introduction, Modern Birkhäuser Classics. Birkhüuser Boston Inc., Boston, MA, 2008. doi: 10.1007/978-0-8176-4733-9.  Google Scholar

[1]

Lahcen Maniar, Martin Meyries, Roland Schnaubelt. Null controllability for parabolic equations with dynamic boundary conditions. Evolution Equations & Control Theory, 2017, 6 (3) : 381-407. doi: 10.3934/eect.2017020

[2]

Chunpeng Wang, Yanan Zhou, Runmei Du, Qiang Liu. Carleman estimate for solutions to a degenerate convection-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4207-4222. doi: 10.3934/dcdsb.2018133

[3]

Peng Gao. Global Carleman estimate for the Kawahara equation and its applications. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1853-1874. doi: 10.3934/cpaa.2018088

[4]

Ciprian G. Gal, Mahamadi Warma. Elliptic and parabolic equations with fractional diffusion and dynamic boundary conditions. Evolution Equations & Control Theory, 2016, 5 (1) : 61-103. doi: 10.3934/eect.2016.5.61

[5]

Genni Fragnelli. Null controllability of degenerate parabolic equations in non divergence form via Carleman estimates. Discrete & Continuous Dynamical Systems - S, 2013, 6 (3) : 687-701. doi: 10.3934/dcdss.2013.6.687

[6]

Davide Guidetti. Classical solutions to quasilinear parabolic problems with dynamic boundary conditions. Discrete & Continuous Dynamical Systems - S, 2016, 9 (3) : 717-736. doi: 10.3934/dcdss.2016024

[7]

Ángela Jiménez-Casas, Aníbal Rodríguez-Bernal. Dynamic boundary conditions as limit of singularly perturbed parabolic problems. Conference Publications, 2011, 2011 (Special) : 737-746. doi: 10.3934/proc.2011.2011.737

[8]

El Mustapha Ait Ben Hassi, Farid Ammar khodja, Abdelkarim Hajjaj, Lahcen Maniar. Carleman Estimates and null controllability of coupled degenerate systems. Evolution Equations & Control Theory, 2013, 2 (3) : 441-459. doi: 10.3934/eect.2013.2.441

[9]

Davide Guidetti. Parabolic problems with general Wentzell boundary conditions and diffusion on the boundary. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1401-1417. doi: 10.3934/cpaa.2016.15.1401

[10]

Shumin Li, Masahiro Yamamoto, Bernadette Miara. A Carleman estimate for the linear shallow shell equation and an inverse source problem. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 367-380. doi: 10.3934/dcds.2009.23.367

[11]

Lucie Baudouin, Emmanuelle Crépeau, Julie Valein. Global Carleman estimate on a network for the wave equation and application to an inverse problem. Mathematical Control & Related Fields, 2011, 1 (3) : 307-330. doi: 10.3934/mcrf.2011.1.307

[12]

Tatsien Li, Bopeng Rao, Zhiqiang Wang. Exact boundary controllability and observability for first order quasilinear hyperbolic systems with a kind of nonlocal boundary conditions. Discrete & Continuous Dynamical Systems - A, 2010, 28 (1) : 243-257. doi: 10.3934/dcds.2010.28.243

[13]

Farid Ammar Khodja, Cherif Bouzidi, Cédric Dupaix, Lahcen Maniar. Null controllability of retarded parabolic equations. Mathematical Control & Related Fields, 2014, 4 (1) : 1-15. doi: 10.3934/mcrf.2014.4.1

[14]

J. F. Padial. Existence and estimate of the location of the free-boundary for a non local inverse elliptic-parabolic problem arising in nuclear fusion. Conference Publications, 2011, 2011 (Special) : 1176-1185. doi: 10.3934/proc.2011.2011.1176

[15]

Jong-Shenq Guo, Satoshi Sasayama, Chi-Jen Wang. Blowup rate estimate for a system of semilinear parabolic equations. Communications on Pure & Applied Analysis, 2009, 8 (2) : 711-718. doi: 10.3934/cpaa.2009.8.711

[16]

Gary Lieberman. A new regularity estimate for solutions of singular parabolic equations. Conference Publications, 2005, 2005 (Special) : 605-610. doi: 10.3934/proc.2005.2005.605

[17]

Lingyang Liu, Xu Liu. Controllability and observability of some coupled stochastic parabolic systems. Mathematical Control & Related Fields, 2018, 8 (3&4) : 829-854. doi: 10.3934/mcrf.2018037

[18]

Huan-Zhen Chen, Zhao-Jie Zhou, Hong Wang, Hong-Ying Man. An optimal-order error estimate for a family of characteristic-mixed methods to transient convection-diffusion problems. Discrete & Continuous Dynamical Systems - B, 2011, 15 (2) : 325-341. doi: 10.3934/dcdsb.2011.15.325

[19]

Patrick Henning, Mario Ohlberger. A-posteriori error estimate for a heterogeneous multiscale approximation of advection-diffusion problems with large expected drift. Discrete & Continuous Dynamical Systems - S, 2016, 9 (5) : 1393-1420. doi: 10.3934/dcdss.2016056

[20]

Thuy N. T. Nguyen. Carleman estimates for semi-discrete parabolic operators with a discontinuous diffusion coefficient and applications to controllability. Mathematical Control & Related Fields, 2014, 4 (2) : 203-259. doi: 10.3934/mcrf.2014.4.203

2018 Impact Factor: 1.048

Article outline

[Back to Top]