-
Previous Article
Semiglobal exponential stabilization of nonautonomous semilinear parabolic-like systems
- EECT Home
- This Issue
-
Next Article
Forward controllability of a random attractor for the non-autonomous stochastic sine-Gordon equation on an unbounded domain
Local null controllability of coupled degenerate systems with nonlocal terms and one control force
1. | Departamento de Ciências da Natureza, Universidade Federal Fluminense, Rio das Ostras, RJ, 28895-532, Brazil |
2. | Departamento de Matemática Aplicada, Universidade Federal Fluminense, Niterói, RJ, 24020-140, Brazil |
3. | Departamento de Análise, Universidade Federal Fluminense, Niterói, RJ, 24020-140, Brazil |
In this paper, we are concerned with the internal control of a class of one-dimensional nonlinear parabolic systems with nonlocal and weakly degenerate diffusion coefficients. Our main theorem establishes a local null controllability result with only one internal control for a system of two equations. The proof, based on the ideias developed by Fursikov and Imanuvilov, is obtained from the global null controllability of the linearized system provided by Lyusternik's Inverse Mapping Theorem. This work extends the results previously treated by the authors for just one equation. For the system, the main issue is to obtain similar results with just one internal control, which requires a new Carleman estimate with the local term just depending on one of the state function.
References:
[1] |
E. M. Ait Ben Hassi, F. Ammar Khodja, A. Hajjaj and L. Maniar,
Null controllability of degenerate parabolic cascade systems, Port. Math., 68 (2011), 345-367.
doi: 10.4171/PM/1895. |
[2] |
E. M. Ait Ben Hassi, F. Ammar Khodja, A. Hajjaj and L. Maniar,
Carleman estimates and null controllability of coupled degenerate systems, Evol. Equ. Control Theory, 2 (2013), 441-459.
doi: 10.3934/eect.2013.2.441. |
[3] |
E. M. Ait Ben Hassi, M. Fadili and L. Maniar,
On algebraic condition for null controllability of some coupled degenerate systems, Math. Control Relat. Fields, 9 (2019), 77-95.
doi: 10.3934/mcrf.2019004. |
[4] |
F. Alabau-Boussouira, P. Cannarsa and G. Fragnelli,
Carleman estimates for degenerate parabolic operators with applications to null controllability, J. Evol. Equ., 6 (2006), 161-204.
doi: 10.1007/s00028-006-0222-6. |
[5] |
V. M. Alekseev, V. M. Tikhomirov and S. V. Fomin, Optimal Control, Contemporary Soviet Mathematics. Consultants Bureau, New York, 1987.
doi: 10.1007/978-1-4615-7551-1. |
[6] |
F. Ammar-Khodja, A. Benabdallah, M. González Burgos and L. de Teresa,
Recent results on the controllability of linear coupled parabolic problems: A survey, Math. Control Relat. Fields, 1 (2011), 267-306.
doi: 10.3934/mcrf.2011.1.267. |
[7] |
P. Cannarsa and L. de Teresa, Controllability of 1-d coupled degenerate parabolic equations, Electron. J. Differential Equations, 73 (2009), 21 pp. |
[8] |
N. Carreno and S. Guerrero,
Local null controllability of the n-dimensional navier–stokes system with n- 1 scalar controls in an arbitrary control domain, J. Math. Fluid Mech., 15 (2013), 139-153.
doi: 10.1007/s00021-012-0093-2. |
[9] |
N. Chang and M. Chipot,
On some model diffusion problems with a nonlocal lower order term, Chinese Ann. Math. Ser. B, 24 (2003), 147-166.
doi: 10.1142/S0252959903000153. |
[10] |
H. Clark, E. Fernández-Cara, J. Límaco and L. Medeiros,
Theoretical and numerical local null controllability for a parabolic system with local and nonlocal nonlinearities, Appl. Math. Comput., 223 (2013), 483-505.
doi: 10.1016/j.amc.2013.08.035. |
[11] |
J.-M. Coron and S. Guerrero,
Null controllability of the n-dimensional stokes system with n- 1 scalar controls, J. Differential Equations, 246 (2009), 2908-2921.
doi: 10.1016/j.jde.2008.10.019. |
[12] |
G. De Marco, G. Gorni and G. Zampieri,
Global inversion of functions: An introduction., NoDEA Nonlinear Differential Equations Appl., 1 (1994), 229-248.
doi: 10.1007/BF01197748. |
[13] |
R. Demarque, J. Límaco and L. Viana,
Local null controllability for degenerate parabolic equations with nonlocal term, Nonlinear Anal. Real World Appl., 43 (2018), 523-547.
doi: 10.1016/j.nonrwa.2018.04.001. |
[14] |
I. Ekeland and R. Temam, Convex Analysis and Variational Problems, Classics in Applied Mathematics, 28. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1999.
doi: 10.1137/1.9781611971088. |
[15] |
M. Fadili and L. Maniar,
Null controllability of n-coupled degenerate parabolic systems with m-controls, J. Evol. Equ., 17 (2017), 1311-1340.
doi: 10.1007/s00028-017-0385-3. |
[16] |
H. O. Fattorini and D. L. Russell,
Exact controllability theorems for linear parabolic equations in one space dimension, Arch. Rational Mech. Anal., 43 (1971), 272-292.
doi: 10.1007/BF00250466. |
[17] |
W. Feller,
The parabolic differential equations and the associated semi-groups of transformations, Ann. of Math., 55 (1952), 468-519.
|
[18] |
W. Feller,
Diffusion processes in one dimension, Trans. Amer. Math. Soc., 77 (1954), 1-31.
doi: 10.1090/S0002-9947-1954-0063607-6. |
[19] |
E. Fernández-Cara, S. Guerrero, O. Y. Imanuvilov and J-P. Puel,
Local exact controllability of the navier–stokes system, J. Math. Pures Appl., 83 (2004), 1501-1542.
doi: 10.1016/j.matpur.2004.02.010. |
[20] |
E. Fernández-Cara, S. Guerrero, O. Y. Imanuvilov and J.-P. Puel,
Some controllability results forthe n-dimensional navier–stokes and boussinesq systems with n-1 scalar controls, SIAM J. Control Optim., 45 (2006), 146-173.
doi: 10.1137/04061965X. |
[21] |
E. Fernández-Cara, J. Límaco and S. B. De Menezes,
Null controllability for a parabolic equation with nonlocal nonlinearities, Systems & Control Letters, 61 (2012), 107-111.
doi: 10.1016/j.sysconle.2011.09.017. |
[22] |
E. Fernández-Cara and E. Zuazua,
The cost of approximate controllability for heat equations: The linear case, Adv. Differential Equations, 5 (2000), 465-514.
|
[23] |
G. Floridia,
Approximate controllability for nonlinear degenerate parabolic problems with bilinear control, J. Differential Equations, 257 (2014), 3382-3422.
doi: 10.1016/j.jde.2014.06.016. |
[24] |
A. V. Fursikov and O. Y. Imanuvilov, Controllability of Evolution Equations, Lecture Notes Series, 34. Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul, 1996. |
[25] |
O. Y. Imanuvilov,
Remarks on exact controllability for the navier-stokes equations, ESAIM Control Optim. Calc. Var., 6 (2001), 39-72.
doi: 10.1051/cocv:2001103. |
[26] |
O. Y. Imanuvilov and M. Yamamoto,
Carleman inequalities for parabolic equations in sobolev spaces of negative order and exact controllability for semilinear parabolic equations, Publ. Res. Inst. Math. Sci., 39 (2003), 227-274.
doi: 10.2977/prims/1145476103. |
[27] |
G. Lebeau and L. Robbiano,
Contrôle exact de léquation de la chaleur, Comm. Partial Differential Equations, 20 (1995), 335-356.
doi: 10.1080/03605309508821097. |
[28] |
L. Medeiros, J. Límaco and S. B. Menezes,
Vibrations of elastic strings: Mathematical aspects, part one, J. Comput. Anal. Appl., 4 (2002), 91-127.
doi: 10.1023/A:1012934900316. |
[29] |
O. A. Oleinik and V. N. Samokhin, Mathematical Models in Boundary Layer Theory, Applied Mathematics and Mathematical Computation, 15. Chapman & Hall/CRC, Boca Raton, FL, 1999. |
show all references
References:
[1] |
E. M. Ait Ben Hassi, F. Ammar Khodja, A. Hajjaj and L. Maniar,
Null controllability of degenerate parabolic cascade systems, Port. Math., 68 (2011), 345-367.
doi: 10.4171/PM/1895. |
[2] |
E. M. Ait Ben Hassi, F. Ammar Khodja, A. Hajjaj and L. Maniar,
Carleman estimates and null controllability of coupled degenerate systems, Evol. Equ. Control Theory, 2 (2013), 441-459.
doi: 10.3934/eect.2013.2.441. |
[3] |
E. M. Ait Ben Hassi, M. Fadili and L. Maniar,
On algebraic condition for null controllability of some coupled degenerate systems, Math. Control Relat. Fields, 9 (2019), 77-95.
doi: 10.3934/mcrf.2019004. |
[4] |
F. Alabau-Boussouira, P. Cannarsa and G. Fragnelli,
Carleman estimates for degenerate parabolic operators with applications to null controllability, J. Evol. Equ., 6 (2006), 161-204.
doi: 10.1007/s00028-006-0222-6. |
[5] |
V. M. Alekseev, V. M. Tikhomirov and S. V. Fomin, Optimal Control, Contemporary Soviet Mathematics. Consultants Bureau, New York, 1987.
doi: 10.1007/978-1-4615-7551-1. |
[6] |
F. Ammar-Khodja, A. Benabdallah, M. González Burgos and L. de Teresa,
Recent results on the controllability of linear coupled parabolic problems: A survey, Math. Control Relat. Fields, 1 (2011), 267-306.
doi: 10.3934/mcrf.2011.1.267. |
[7] |
P. Cannarsa and L. de Teresa, Controllability of 1-d coupled degenerate parabolic equations, Electron. J. Differential Equations, 73 (2009), 21 pp. |
[8] |
N. Carreno and S. Guerrero,
Local null controllability of the n-dimensional navier–stokes system with n- 1 scalar controls in an arbitrary control domain, J. Math. Fluid Mech., 15 (2013), 139-153.
doi: 10.1007/s00021-012-0093-2. |
[9] |
N. Chang and M. Chipot,
On some model diffusion problems with a nonlocal lower order term, Chinese Ann. Math. Ser. B, 24 (2003), 147-166.
doi: 10.1142/S0252959903000153. |
[10] |
H. Clark, E. Fernández-Cara, J. Límaco and L. Medeiros,
Theoretical and numerical local null controllability for a parabolic system with local and nonlocal nonlinearities, Appl. Math. Comput., 223 (2013), 483-505.
doi: 10.1016/j.amc.2013.08.035. |
[11] |
J.-M. Coron and S. Guerrero,
Null controllability of the n-dimensional stokes system with n- 1 scalar controls, J. Differential Equations, 246 (2009), 2908-2921.
doi: 10.1016/j.jde.2008.10.019. |
[12] |
G. De Marco, G. Gorni and G. Zampieri,
Global inversion of functions: An introduction., NoDEA Nonlinear Differential Equations Appl., 1 (1994), 229-248.
doi: 10.1007/BF01197748. |
[13] |
R. Demarque, J. Límaco and L. Viana,
Local null controllability for degenerate parabolic equations with nonlocal term, Nonlinear Anal. Real World Appl., 43 (2018), 523-547.
doi: 10.1016/j.nonrwa.2018.04.001. |
[14] |
I. Ekeland and R. Temam, Convex Analysis and Variational Problems, Classics in Applied Mathematics, 28. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1999.
doi: 10.1137/1.9781611971088. |
[15] |
M. Fadili and L. Maniar,
Null controllability of n-coupled degenerate parabolic systems with m-controls, J. Evol. Equ., 17 (2017), 1311-1340.
doi: 10.1007/s00028-017-0385-3. |
[16] |
H. O. Fattorini and D. L. Russell,
Exact controllability theorems for linear parabolic equations in one space dimension, Arch. Rational Mech. Anal., 43 (1971), 272-292.
doi: 10.1007/BF00250466. |
[17] |
W. Feller,
The parabolic differential equations and the associated semi-groups of transformations, Ann. of Math., 55 (1952), 468-519.
|
[18] |
W. Feller,
Diffusion processes in one dimension, Trans. Amer. Math. Soc., 77 (1954), 1-31.
doi: 10.1090/S0002-9947-1954-0063607-6. |
[19] |
E. Fernández-Cara, S. Guerrero, O. Y. Imanuvilov and J-P. Puel,
Local exact controllability of the navier–stokes system, J. Math. Pures Appl., 83 (2004), 1501-1542.
doi: 10.1016/j.matpur.2004.02.010. |
[20] |
E. Fernández-Cara, S. Guerrero, O. Y. Imanuvilov and J.-P. Puel,
Some controllability results forthe n-dimensional navier–stokes and boussinesq systems with n-1 scalar controls, SIAM J. Control Optim., 45 (2006), 146-173.
doi: 10.1137/04061965X. |
[21] |
E. Fernández-Cara, J. Límaco and S. B. De Menezes,
Null controllability for a parabolic equation with nonlocal nonlinearities, Systems & Control Letters, 61 (2012), 107-111.
doi: 10.1016/j.sysconle.2011.09.017. |
[22] |
E. Fernández-Cara and E. Zuazua,
The cost of approximate controllability for heat equations: The linear case, Adv. Differential Equations, 5 (2000), 465-514.
|
[23] |
G. Floridia,
Approximate controllability for nonlinear degenerate parabolic problems with bilinear control, J. Differential Equations, 257 (2014), 3382-3422.
doi: 10.1016/j.jde.2014.06.016. |
[24] |
A. V. Fursikov and O. Y. Imanuvilov, Controllability of Evolution Equations, Lecture Notes Series, 34. Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul, 1996. |
[25] |
O. Y. Imanuvilov,
Remarks on exact controllability for the navier-stokes equations, ESAIM Control Optim. Calc. Var., 6 (2001), 39-72.
doi: 10.1051/cocv:2001103. |
[26] |
O. Y. Imanuvilov and M. Yamamoto,
Carleman inequalities for parabolic equations in sobolev spaces of negative order and exact controllability for semilinear parabolic equations, Publ. Res. Inst. Math. Sci., 39 (2003), 227-274.
doi: 10.2977/prims/1145476103. |
[27] |
G. Lebeau and L. Robbiano,
Contrôle exact de léquation de la chaleur, Comm. Partial Differential Equations, 20 (1995), 335-356.
doi: 10.1080/03605309508821097. |
[28] |
L. Medeiros, J. Límaco and S. B. Menezes,
Vibrations of elastic strings: Mathematical aspects, part one, J. Comput. Anal. Appl., 4 (2002), 91-127.
doi: 10.1023/A:1012934900316. |
[29] |
O. A. Oleinik and V. N. Samokhin, Mathematical Models in Boundary Layer Theory, Applied Mathematics and Mathematical Computation, 15. Chapman & Hall/CRC, Boca Raton, FL, 1999. |
[1] |
Michiel Bertsch, Danielle Hilhorst, Hirofumi Izuhara, Masayasu Mimura, Tohru Wakasa. A nonlinear parabolic-hyperbolic system for contact inhibition and a degenerate parabolic fisher kpp equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3117-3142. doi: 10.3934/dcds.2019226 |
[2] |
Vo Van Au, Mokhtar Kirane, Nguyen Huy Tuan. On a terminal value problem for a system of parabolic equations with nonlinear-nonlocal diffusion terms. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1579-1613. doi: 10.3934/dcdsb.2020174 |
[3] |
Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHUM approach. Numerical Algebra, Control & Optimization, 2020 doi: 10.3934/naco.2020055 |
[4] |
Kuntal Bhandari, Franck Boyer. Boundary null-controllability of coupled parabolic systems with Robin conditions. Evolution Equations & Control Theory, 2021, 10 (1) : 61-102. doi: 10.3934/eect.2020052 |
[5] |
Guojie Zheng, Dihong Xu, Taige Wang. A unique continuation property for a class of parabolic differential inequalities in a bounded domain. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020280 |
[6] |
Nguyen Anh Tuan, Donal O'Regan, Dumitru Baleanu, Nguyen H. Tuan. On time fractional pseudo-parabolic equations with nonlocal integral conditions. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020109 |
[7] |
Vo Van Au, Hossein Jafari, Zakia Hammouch, Nguyen Huy Tuan. On a final value problem for a nonlinear fractional pseudo-parabolic equation. Electronic Research Archive, 2021, 29 (1) : 1709-1734. doi: 10.3934/era.2020088 |
[8] |
Jonathan J. Wylie, Robert M. Miura, Huaxiong Huang. Systems of coupled diffusion equations with degenerate nonlinear source terms: Linear stability and traveling waves. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 561-569. doi: 10.3934/dcds.2009.23.561 |
[9] |
Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272 |
[10] |
Michael Winkler, Christian Stinner. Refined regularity and stabilization properties in a degenerate haptotaxis system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 4039-4058. doi: 10.3934/dcds.2020030 |
[11] |
Nguyen Huu Can, Nguyen Huy Tuan, Donal O'Regan, Vo Van Au. On a final value problem for a class of nonlinear hyperbolic equations with damping term. Evolution Equations & Control Theory, 2021, 10 (1) : 103-127. doi: 10.3934/eect.2020053 |
[12] |
Wenjun Liu, Hefeng Zhuang. Global attractor for a suspension bridge problem with a nonlinear delay term in the internal feedback. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 907-942. doi: 10.3934/dcdsb.2020147 |
[13] |
Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249 |
[14] |
Nguyen Huy Tuan, Vo Van Au, Runzhang Xu. Semilinear Caputo time-fractional pseudo-parabolic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020282 |
[15] |
Juliana Fernandes, Liliane Maia. Blow-up and bounded solutions for a semilinear parabolic problem in a saturable medium. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1297-1318. doi: 10.3934/dcds.2020318 |
[16] |
Stanislav Nikolaevich Antontsev, Serik Ersultanovich Aitzhanov, Guzel Rashitkhuzhakyzy Ashurova. An inverse problem for the pseudo-parabolic equation with p-Laplacian. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021005 |
[17] |
Jun Zhou. Lifespan of solutions to a fourth order parabolic PDE involving the Hessian modeling epitaxial growth. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5581-5590. doi: 10.3934/cpaa.2020252 |
[18] |
Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020049 |
[19] |
Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020462 |
[20] |
Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020103 |
2019 Impact Factor: 0.953
Tools
Metrics
Other articles
by authors
[Back to Top]