September  2020, 9(3): 635-672. doi: 10.3934/eect.2020027

Semiglobal exponential stabilization of nonautonomous semilinear parabolic-like systems

Johann Radon Institute for Computational and Applied Mathematics, ÖAW, Altenbergerstraße 69, A-4040 Linz, Austria

Received  April 2019 Revised  June 2019 Published  December 2019

It is shown that an explicit oblique projection nonlinear feedback controller is able to stabilize semilinear parabolic equations, with time-dependent dynamics and with a polynomial nonlinearity. The actuators are typically modeled by a finite number of indicator functions of small subdomains. No constraint is imposed on the sign of the polynomial nonlinearity. The norm of the initial condition can be arbitrarily large, and the total volume covered by the actuators can be arbitrarily small. The number of actuators depends on the operator norm of the oblique projection, on the polynomial degree of the nonlinearity, on the norm of the initial condition, and on the total volume covered by the actuators. The range of the feedback controller coincides with the range of the oblique projection, which is the linear span of the actuators. The oblique projection is performed along the orthogonal complement of a subspace spanned by a suitable finite number of eigenfunctions of the diffusion operator. For rectangular domains, it is possible to explicitly construct/place the actuators so that the stability of the closed-loop system is guaranteed. Simulations are presented, which show the semiglobal stabilizing performance of the nonlinear feedback.

Citation: Sérgio S. Rodrigues. Semiglobal exponential stabilization of nonautonomous semilinear parabolic-like systems. Evolution Equations & Control Theory, 2020, 9 (3) : 635-672. doi: 10.3934/eect.2020027
References:
[1]

S. Agmon, Lectures on Elliptic Boundary Value Problems, van Nostrand, 1965, URL https://bookstore.ams.org/chel-369-h/.  Google Scholar

[2]

A. Ambrosetti and G. Prodi, A Primer of Nonlinear Analysis, Cambridge University Press, Cambridge, 1993, URL https://www.cambridge.org.  Google Scholar

[3]

K. AmmariT. Duyckaerts and A. Shirikyan, Local feedback stabilisation to a non-stationary solution for a damped non-linear wave equation, Math. Control Relat. Fields, 6 (2016), 1-25.  doi: 10.3934/mcrf.2016.6.1.  Google Scholar

[4]

S. Aniţa and M. Langlais, Stabilization strategies for some reaction-diffusion systems, Nonlinear Anal. Real World Appl., 10 (2009), 345-357.  doi: 10.1016/j.nonrwa.2007.09.003.  Google Scholar

[5]

B. Azmi and K. Kunisch, Receding horizon control for the stabilization of the wave equation, Discrete Contin. Dyn. Syst., 38 (2018), 449-484.  doi: 10.3934/dcds.2018021.  Google Scholar

[6]

M. Badra and T. Takahashi, Stabilization of parabolic nonlinear systems with finite dimensional feedback or dynamical controllers: Application to the Navier-Stokes system, SIAM J. Control Optim., 49 (2011), 420-463.  doi: 10.1137/090778146.  Google Scholar

[7]

J. M. Ball, Remarks on blow-up and nonexistence theorems for nonlinear evolution equations, Quart. J. Math. Oxford Ser., 28 (1977), 473-486.  doi: 10.1093/qmath/28.4.473.  Google Scholar

[8]

V. Barbu, Stabilization of Navier-Stokes equations by oblique boundary feedback controllers, SIAM J. Control Optim., 50 (2012), 2288-2307.  doi: 10.1137/110837164.  Google Scholar

[9]

V. Barbu, Boundary stabilization of equilibrium solutions to parabolic equations, IEEE Trans. Automat. Control, 58 (2013), 2416-2420.  doi: 10.1109/TAC.2013.2254013.  Google Scholar

[10]

V. BarbuI. Lasiecka and R. Triggiani, Abstract settings for tangential boundary stabilization of Navier-Stokes equations by high- and low-gain feedback controllers, Nonlinear Anal., 64 (2006), 2704-2746.  doi: 10.1016/j.na.2005.09.012.  Google Scholar

[11]

V. BarbuS. S. Rodrigues and A. Shirikyan, Internal exponential stabilization to a nonstationary solution for 3D Navier-Stokes equations, SIAM J. Control Optim., 49 (2011), 1454-1478.  doi: 10.1137/100785739.  Google Scholar

[12]

V. Barbu and R. Triggiani, Internal stabilization of Navier-Stokes equations with finite-dimensional controllers, Indiana Univ. Math. J., 53 (2004), 1443-1494.  doi: 10.1512/iumj.2004.53.2445.  Google Scholar

[13]

F. Brauer, Perturbations of nonlinear systems of differential equations, J. Math. Anal. Appl., 14 (1966), 198-206.  doi: 10.1016/0022-247X(66)90021-7.  Google Scholar

[14]

T. BreitenK. Kunisch and S. S. Rodrigues, Feedback stabilization to nonstationary solutions of a class of reaction diffusion equations of FitzHugh-Nagumo type, SIAM J. Control Optim., 55 (2017), 2684-2713.  doi: 10.1137/15M1038165.  Google Scholar

[15]

L. Chen and A. Jüngel, Analysis of a parabolic cross-diffusion population model without self-diffusion, J. Differential Equations, 224 (2006), 39-59.  doi: 10.1016/j.jde.2005.08.002.  Google Scholar

[16]

S. Chowdhury and S. Ervedoza, Open loop stabilization of incompressible Navier-Stokes equations in a 2d channel using power series expansion, J. Math. Pures Appl., 130 (2019), 301-346.  doi: 10.1016/j.matpur.2019.01.006.  Google Scholar

[17]

J.-M. Coron and H.-M. Nguyen, Null controllability and finite time stabilization for the heat equations with variable coefficients in space in one dimension via backstepping approach, Arch. Rational Mech. Anal., 225 (2017), 993-1023.  doi: 10.1007/s00205-017-1119-y.  Google Scholar

[18]

F. Demengel and G. Demengel, Functional Spaces for the Theory of Elliptic Partial Differential Equations, Universitext, Springer, London, EDP Sciences, Les Ulis, 2012. doi: 10.1007/978-1-4471-2807-6.  Google Scholar

[19]

T. DuyckaertsX. Zhang and E. Zuazua, On the optimality of the observability inequalities for parabolic and hyperbolic systems with potentials, Ann. Inst. H. Poincaré Anal. Non Linéaire, 25 (2008), 1-41.  doi: 10.1016/j.anihpc.2006.07.005.  Google Scholar

[20]

E. Fernández-CaraM. González-BurgosS. Guerrero and J.-P. Puel, Null controllability of the heat equation with boundary Fourier conditions: The linear case, ESAIM Control Optim. Calc. Var., 12 (2006), 442-465.  doi: 10.1051/cocv:2006010.  Google Scholar

[21]

E. Fernández-CaraS. GuerreroO. Y. Imanuvilov and J.-P. Puel, Local exact controllability of the Navier-Stokes system, J. Math. Pures Appl., 83 (2004), 1501-1542.  doi: 10.1016/j.matpur.2004.02.010.  Google Scholar

[22]

J. Fourier, Théorie Analytique de la Chaleur, Éditions Jacques Gabay, Paris, 1988.  Google Scholar

[23]

A. V. Fursikov and O. Y. Imanuvilov, Exact controllability of the Navier-Stokes and Boussinesq equations, Russian Math. Surveys, 54 (1999), 565-618.  doi: 10.1070/rm1999v054n03ABEH000153.  Google Scholar

[24]

A. HalanayC. M. Murea and C. A. Safta, Numerical experiment for stabilization of the heat equation by Dirichlet boundary control, Numer. Funct. Anal. Optim., 34 (2013), 1317-1327.  doi: 10.1080/01630563.2013.808210.  Google Scholar

[25]

P. R. Halmos, Naive Set Theory, Undergraduate Texts in Mathematics, Springer-Verlag, New York-Heidelberg, 1974. doi: 10.1007/978-1-4757-1645-0.  Google Scholar

[26]

O. Y. Imanuvilov, Remarks on exact controllability for the Navier-Stokes equations, ESAIM Control Optim. Calc. Var., 6 (2001), 39-72.  doi: 10.1051/cocv:2001103.  Google Scholar

[27]

D. Kalise and K. Kunisch, Polynomial approximation of high-dimensional Hamilton-Jacobi-Bellman equations and applications to feedback control of semilinear parabolic PDEs, SIAM J. Sci. Comput., 40 (2018), A629-A652. doi: 10.1137/17M1116635.  Google Scholar

[28]

D. KaliseK. Kunisch and K. Sturm, Optimal actuator design based on shape calculus, Math. Models Methods Appl. Sci., 28 (2018), 2667-2717.  doi: 10.1142/S0218202518500586.  Google Scholar

[29]

A. Kröner and S. S. Rodrigues, Internal exponential stabilization to a nonstationary solution for 1D burgers equations with piecewise constant controls, Proceedings of the 2015 European Control Conference (ECC), Linz, Austria, (2015), 2676-2681, doi: 10.1109/ECC.2015.7330942. Google Scholar

[30]

A. Kröner and S. S. Rodrigues, Remarks on the internal exponential stabilization to a nonstationary solution for 1D Burgers equations, SIAM J. Control Optim., 53 (2015), 1020-1055.  doi: 10.1137/140958979.  Google Scholar

[31]

K. Kunisch and S. S. Rodrigues, Explicit exponential stabilization of nonautonomous linear parabolic-like systems by a finite number of internal actuators, ESAIM Control Optim. Calc. Var., 25 (2019). doi: 10.1051/cocv/2018054.  Google Scholar

[32]

K. Kunisch and S. S. Rodrigues, Oblique projection based stabilizing feedback for nonautonomous coupled parabolic-ODE systems, Discrete Contin. Dyn. Syst., (2018), 2018-2040, URL https://www.ricam.oeaw.ac.at/publications/ricam-reports/, Google Scholar

[33]

C. LaurentF. Linares and L. Rosier, Control and stabilization of the Benjamin-Ono equation in ${L}^2(\mathbb{T})$, Arch. Ration. Mech. Anal., 218 (2015), 1531-1575.  doi: 10.1007/s00205-015-0887-5.  Google Scholar

[34]

H. A. Levine, Some nonexistence and instability theorems for solutions of formally parabolic equations of the form ${P}u_t = -{A}u+{\mathcal F}(u)$, Arch. Ration. Mech. Anal., 51 (1973), 371-386.  doi: 10.1007/BF00263041.  Google Scholar

[35]

J.-L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, Vol. Ⅰ of Die Grundlehren Math. Wiss. Einzeldarstellungen, Springer-Verlag, 1972. doi: 10.1007/978-3-642-65161-8.  Google Scholar

[36]

F. Merle and H. Zaag, Optimal estimates for blowup rate and behavior for nonlinear heat equations, Comm. Pure Appl. Math., 51 (1998), 139-196.   Google Scholar

[37]

K. Morris, Linear-quadratic optimal actuator location, IEEE Trans. Automat. Control, 56 (2011), 113-124.  doi: 10.1109/TAC.2010.2052151.  Google Scholar

[38]

K. Morris and S. Yang, A study of optimal actuator placement for control of diffusion, 2016 American Control Conference (AAC), Boston, MA, USA, (2016), 2378-5861. doi: 10.1109/ACC.2016.7525303.  Google Scholar

[39]

A. MünchP. Pedregal and F. Periago, Optimal internal stabilization of the linear system of elasticity, Arch. Rational Mech. Anal., 193 (2009), 171-193.  doi: 10.1007/s00205-008-0187-4.  Google Scholar

[40]

I. Munteanu, Boundary stabilisation to non-stationary solutions for deterministic and stochastic parabolic-type equations, Internat. J. Control, 92 (2019), 1720-1728.  doi: 10.1080/00207179.2017.1407878.  Google Scholar

[41]

T. NagataniH. Emmerich and K. Nakanishi, Burgers equation for kinetic clustering in traffic flow, Physica A, 255 (1998), 158-162.  doi: 10.1016/S0378-4371(98)00082-X.  Google Scholar

[42]

J. Nagumo, S. Arimoto and S. Yoshizawa, An active pulse transmission line simulating nerve axon, Proceedings of the IRE, 1962, 2061-2070. doi: 10.1109/JRPROC.1962.288235.  Google Scholar

[43]

T. Nambu, Feedback stabilization for distributed parameter systems of parabolic type, Ⅱ, Arch. Rational Mech. Anal., 79 (1882), 241-259.  doi: 10.1007/BF00251905.  Google Scholar

[44]

E. M. D. NgomA. Sène and D. Y. Le Roux, Global stabilization of the Navier-Stokes equations around an unstable equilibrium state with a boundary feedback controller, Evol. Equ. Control Theory, 4 (2015), 89-106.  doi: 10.3934/eect.2015.4.89.  Google Scholar

[45]

D. Phan and S. S. Rodrigues, Gevrey regularity for Navier-Stokes equations under Lions boundary conditions, J. Funct. Anal., 272 (2017), 2865-2898.  doi: 10.1016/j.jfa.2017.01.014.  Google Scholar

[46]

D. Phan and S. S. Rodrigues, Stabilization to trajectories for parabolic equations, Math. Control Signals Systems, 30 (2018), 50 pp. doi: 10.1007/s00498-018-0218-0.  Google Scholar

[47]

Y. PrivatE. Trélat and E. Zuazua, Actuator design for parabolic distributed parameter systems with the moment method, SIAM J. Control Optim., 55 (2017), 1128-1152.  doi: 10.1137/16M1058418.  Google Scholar

[48]

J.-P. Raymond, Feedback boundary stabilization of the three-dimensional incompressible Navier-Stokes equations, J. Math. Pures Appl., 87 (2007), 627-669.  doi: 10.1016/j.matpur.2007.04.002.  Google Scholar

[49]

J.-P. Raymond and L. Thevenet, Boundary feedback stabilization of the two-dimensional Navier-Stokes equations with finite-dimensional controllers, Discrete Contin. Dyn. Syst., 27 (2010), 1159-1187.  doi: 10.3934/dcds.2010.27.1159.  Google Scholar

[50]

S. S. Rodrigues, Feedback boundary stabilization to trajectories for 3D Navier-Stokes equations, Appl. Math. Optim., (2018), 1-38. doi: 10.1007/s00245-017-9474-5.  Google Scholar

[51]

S. S. Rodrigues and K. Sturm, On the explicit feedback stabilisation of one-dimensional linear nonautonomous parabolic equations via oblique projections, IMA J. Math. Control Inform., (2018). doi: 10.1093/imamci/dny045.  Google Scholar

[52]

D. L. Russell, Controllability and stabilizability theory for linear partial differential equations: Recent progress and open questions, SIAM Rev., 20 (1978), 639-739.  doi: 10.1137/1020095.  Google Scholar

[53]

D. L. Russell and B. Y. Zhang, Exact controllability and stabilizability of the Korteweg-de Vries equation, Trans. Amer. Math. Soc., 348 (1996), 3643-3672.  doi: 10.1090/S0002-9947-96-01672-8.  Google Scholar

[54]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Second edition. Applied Mathematical Sciences, 68. Springer-Verlag, New York, 1997. doi: 10.1007/978-1-4612-0645-3.  Google Scholar

[55]

R. Temam, Navier-Stokes Equations: Theory and Numerical Analysis, Reprint of the 1984 edition. AMS Chelsea Publishing, Providence, RI, 2001. doi: 10.1090/chel/343.  Google Scholar

[56]

M. Y. Wu, A note on stability of linear time-varying systems, IEEE Trans. Automat. Control, AC-19 (1974), 162. doi: 10.1109/tac.1974.1100529.  Google Scholar

[57]

M. Yamamoto, Carleman estimates for parabolic equations and applications, Inverse Problems, 25 (2009), 75 pp. doi: 10.1088/0266-5611/25/12/123013.  Google Scholar

[58]

W. H. Young, On classes of summable functions and their Fourier series, Proc. R. Soc. Lond., 87 (1912), 225-229.  doi: 10.1098/rspa.1912.0076.  Google Scholar

show all references

References:
[1]

S. Agmon, Lectures on Elliptic Boundary Value Problems, van Nostrand, 1965, URL https://bookstore.ams.org/chel-369-h/.  Google Scholar

[2]

A. Ambrosetti and G. Prodi, A Primer of Nonlinear Analysis, Cambridge University Press, Cambridge, 1993, URL https://www.cambridge.org.  Google Scholar

[3]

K. AmmariT. Duyckaerts and A. Shirikyan, Local feedback stabilisation to a non-stationary solution for a damped non-linear wave equation, Math. Control Relat. Fields, 6 (2016), 1-25.  doi: 10.3934/mcrf.2016.6.1.  Google Scholar

[4]

S. Aniţa and M. Langlais, Stabilization strategies for some reaction-diffusion systems, Nonlinear Anal. Real World Appl., 10 (2009), 345-357.  doi: 10.1016/j.nonrwa.2007.09.003.  Google Scholar

[5]

B. Azmi and K. Kunisch, Receding horizon control for the stabilization of the wave equation, Discrete Contin. Dyn. Syst., 38 (2018), 449-484.  doi: 10.3934/dcds.2018021.  Google Scholar

[6]

M. Badra and T. Takahashi, Stabilization of parabolic nonlinear systems with finite dimensional feedback or dynamical controllers: Application to the Navier-Stokes system, SIAM J. Control Optim., 49 (2011), 420-463.  doi: 10.1137/090778146.  Google Scholar

[7]

J. M. Ball, Remarks on blow-up and nonexistence theorems for nonlinear evolution equations, Quart. J. Math. Oxford Ser., 28 (1977), 473-486.  doi: 10.1093/qmath/28.4.473.  Google Scholar

[8]

V. Barbu, Stabilization of Navier-Stokes equations by oblique boundary feedback controllers, SIAM J. Control Optim., 50 (2012), 2288-2307.  doi: 10.1137/110837164.  Google Scholar

[9]

V. Barbu, Boundary stabilization of equilibrium solutions to parabolic equations, IEEE Trans. Automat. Control, 58 (2013), 2416-2420.  doi: 10.1109/TAC.2013.2254013.  Google Scholar

[10]

V. BarbuI. Lasiecka and R. Triggiani, Abstract settings for tangential boundary stabilization of Navier-Stokes equations by high- and low-gain feedback controllers, Nonlinear Anal., 64 (2006), 2704-2746.  doi: 10.1016/j.na.2005.09.012.  Google Scholar

[11]

V. BarbuS. S. Rodrigues and A. Shirikyan, Internal exponential stabilization to a nonstationary solution for 3D Navier-Stokes equations, SIAM J. Control Optim., 49 (2011), 1454-1478.  doi: 10.1137/100785739.  Google Scholar

[12]

V. Barbu and R. Triggiani, Internal stabilization of Navier-Stokes equations with finite-dimensional controllers, Indiana Univ. Math. J., 53 (2004), 1443-1494.  doi: 10.1512/iumj.2004.53.2445.  Google Scholar

[13]

F. Brauer, Perturbations of nonlinear systems of differential equations, J. Math. Anal. Appl., 14 (1966), 198-206.  doi: 10.1016/0022-247X(66)90021-7.  Google Scholar

[14]

T. BreitenK. Kunisch and S. S. Rodrigues, Feedback stabilization to nonstationary solutions of a class of reaction diffusion equations of FitzHugh-Nagumo type, SIAM J. Control Optim., 55 (2017), 2684-2713.  doi: 10.1137/15M1038165.  Google Scholar

[15]

L. Chen and A. Jüngel, Analysis of a parabolic cross-diffusion population model without self-diffusion, J. Differential Equations, 224 (2006), 39-59.  doi: 10.1016/j.jde.2005.08.002.  Google Scholar

[16]

S. Chowdhury and S. Ervedoza, Open loop stabilization of incompressible Navier-Stokes equations in a 2d channel using power series expansion, J. Math. Pures Appl., 130 (2019), 301-346.  doi: 10.1016/j.matpur.2019.01.006.  Google Scholar

[17]

J.-M. Coron and H.-M. Nguyen, Null controllability and finite time stabilization for the heat equations with variable coefficients in space in one dimension via backstepping approach, Arch. Rational Mech. Anal., 225 (2017), 993-1023.  doi: 10.1007/s00205-017-1119-y.  Google Scholar

[18]

F. Demengel and G. Demengel, Functional Spaces for the Theory of Elliptic Partial Differential Equations, Universitext, Springer, London, EDP Sciences, Les Ulis, 2012. doi: 10.1007/978-1-4471-2807-6.  Google Scholar

[19]

T. DuyckaertsX. Zhang and E. Zuazua, On the optimality of the observability inequalities for parabolic and hyperbolic systems with potentials, Ann. Inst. H. Poincaré Anal. Non Linéaire, 25 (2008), 1-41.  doi: 10.1016/j.anihpc.2006.07.005.  Google Scholar

[20]

E. Fernández-CaraM. González-BurgosS. Guerrero and J.-P. Puel, Null controllability of the heat equation with boundary Fourier conditions: The linear case, ESAIM Control Optim. Calc. Var., 12 (2006), 442-465.  doi: 10.1051/cocv:2006010.  Google Scholar

[21]

E. Fernández-CaraS. GuerreroO. Y. Imanuvilov and J.-P. Puel, Local exact controllability of the Navier-Stokes system, J. Math. Pures Appl., 83 (2004), 1501-1542.  doi: 10.1016/j.matpur.2004.02.010.  Google Scholar

[22]

J. Fourier, Théorie Analytique de la Chaleur, Éditions Jacques Gabay, Paris, 1988.  Google Scholar

[23]

A. V. Fursikov and O. Y. Imanuvilov, Exact controllability of the Navier-Stokes and Boussinesq equations, Russian Math. Surveys, 54 (1999), 565-618.  doi: 10.1070/rm1999v054n03ABEH000153.  Google Scholar

[24]

A. HalanayC. M. Murea and C. A. Safta, Numerical experiment for stabilization of the heat equation by Dirichlet boundary control, Numer. Funct. Anal. Optim., 34 (2013), 1317-1327.  doi: 10.1080/01630563.2013.808210.  Google Scholar

[25]

P. R. Halmos, Naive Set Theory, Undergraduate Texts in Mathematics, Springer-Verlag, New York-Heidelberg, 1974. doi: 10.1007/978-1-4757-1645-0.  Google Scholar

[26]

O. Y. Imanuvilov, Remarks on exact controllability for the Navier-Stokes equations, ESAIM Control Optim. Calc. Var., 6 (2001), 39-72.  doi: 10.1051/cocv:2001103.  Google Scholar

[27]

D. Kalise and K. Kunisch, Polynomial approximation of high-dimensional Hamilton-Jacobi-Bellman equations and applications to feedback control of semilinear parabolic PDEs, SIAM J. Sci. Comput., 40 (2018), A629-A652. doi: 10.1137/17M1116635.  Google Scholar

[28]

D. KaliseK. Kunisch and K. Sturm, Optimal actuator design based on shape calculus, Math. Models Methods Appl. Sci., 28 (2018), 2667-2717.  doi: 10.1142/S0218202518500586.  Google Scholar

[29]

A. Kröner and S. S. Rodrigues, Internal exponential stabilization to a nonstationary solution for 1D burgers equations with piecewise constant controls, Proceedings of the 2015 European Control Conference (ECC), Linz, Austria, (2015), 2676-2681, doi: 10.1109/ECC.2015.7330942. Google Scholar

[30]

A. Kröner and S. S. Rodrigues, Remarks on the internal exponential stabilization to a nonstationary solution for 1D Burgers equations, SIAM J. Control Optim., 53 (2015), 1020-1055.  doi: 10.1137/140958979.  Google Scholar

[31]

K. Kunisch and S. S. Rodrigues, Explicit exponential stabilization of nonautonomous linear parabolic-like systems by a finite number of internal actuators, ESAIM Control Optim. Calc. Var., 25 (2019). doi: 10.1051/cocv/2018054.  Google Scholar

[32]

K. Kunisch and S. S. Rodrigues, Oblique projection based stabilizing feedback for nonautonomous coupled parabolic-ODE systems, Discrete Contin. Dyn. Syst., (2018), 2018-2040, URL https://www.ricam.oeaw.ac.at/publications/ricam-reports/, Google Scholar

[33]

C. LaurentF. Linares and L. Rosier, Control and stabilization of the Benjamin-Ono equation in ${L}^2(\mathbb{T})$, Arch. Ration. Mech. Anal., 218 (2015), 1531-1575.  doi: 10.1007/s00205-015-0887-5.  Google Scholar

[34]

H. A. Levine, Some nonexistence and instability theorems for solutions of formally parabolic equations of the form ${P}u_t = -{A}u+{\mathcal F}(u)$, Arch. Ration. Mech. Anal., 51 (1973), 371-386.  doi: 10.1007/BF00263041.  Google Scholar

[35]

J.-L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, Vol. Ⅰ of Die Grundlehren Math. Wiss. Einzeldarstellungen, Springer-Verlag, 1972. doi: 10.1007/978-3-642-65161-8.  Google Scholar

[36]

F. Merle and H. Zaag, Optimal estimates for blowup rate and behavior for nonlinear heat equations, Comm. Pure Appl. Math., 51 (1998), 139-196.   Google Scholar

[37]

K. Morris, Linear-quadratic optimal actuator location, IEEE Trans. Automat. Control, 56 (2011), 113-124.  doi: 10.1109/TAC.2010.2052151.  Google Scholar

[38]

K. Morris and S. Yang, A study of optimal actuator placement for control of diffusion, 2016 American Control Conference (AAC), Boston, MA, USA, (2016), 2378-5861. doi: 10.1109/ACC.2016.7525303.  Google Scholar

[39]

A. MünchP. Pedregal and F. Periago, Optimal internal stabilization of the linear system of elasticity, Arch. Rational Mech. Anal., 193 (2009), 171-193.  doi: 10.1007/s00205-008-0187-4.  Google Scholar

[40]

I. Munteanu, Boundary stabilisation to non-stationary solutions for deterministic and stochastic parabolic-type equations, Internat. J. Control, 92 (2019), 1720-1728.  doi: 10.1080/00207179.2017.1407878.  Google Scholar

[41]

T. NagataniH. Emmerich and K. Nakanishi, Burgers equation for kinetic clustering in traffic flow, Physica A, 255 (1998), 158-162.  doi: 10.1016/S0378-4371(98)00082-X.  Google Scholar

[42]

J. Nagumo, S. Arimoto and S. Yoshizawa, An active pulse transmission line simulating nerve axon, Proceedings of the IRE, 1962, 2061-2070. doi: 10.1109/JRPROC.1962.288235.  Google Scholar

[43]

T. Nambu, Feedback stabilization for distributed parameter systems of parabolic type, Ⅱ, Arch. Rational Mech. Anal., 79 (1882), 241-259.  doi: 10.1007/BF00251905.  Google Scholar

[44]

E. M. D. NgomA. Sène and D. Y. Le Roux, Global stabilization of the Navier-Stokes equations around an unstable equilibrium state with a boundary feedback controller, Evol. Equ. Control Theory, 4 (2015), 89-106.  doi: 10.3934/eect.2015.4.89.  Google Scholar

[45]

D. Phan and S. S. Rodrigues, Gevrey regularity for Navier-Stokes equations under Lions boundary conditions, J. Funct. Anal., 272 (2017), 2865-2898.  doi: 10.1016/j.jfa.2017.01.014.  Google Scholar

[46]

D. Phan and S. S. Rodrigues, Stabilization to trajectories for parabolic equations, Math. Control Signals Systems, 30 (2018), 50 pp. doi: 10.1007/s00498-018-0218-0.  Google Scholar

[47]

Y. PrivatE. Trélat and E. Zuazua, Actuator design for parabolic distributed parameter systems with the moment method, SIAM J. Control Optim., 55 (2017), 1128-1152.  doi: 10.1137/16M1058418.  Google Scholar

[48]

J.-P. Raymond, Feedback boundary stabilization of the three-dimensional incompressible Navier-Stokes equations, J. Math. Pures Appl., 87 (2007), 627-669.  doi: 10.1016/j.matpur.2007.04.002.  Google Scholar

[49]

J.-P. Raymond and L. Thevenet, Boundary feedback stabilization of the two-dimensional Navier-Stokes equations with finite-dimensional controllers, Discrete Contin. Dyn. Syst., 27 (2010), 1159-1187.  doi: 10.3934/dcds.2010.27.1159.  Google Scholar

[50]

S. S. Rodrigues, Feedback boundary stabilization to trajectories for 3D Navier-Stokes equations, Appl. Math. Optim., (2018), 1-38. doi: 10.1007/s00245-017-9474-5.  Google Scholar

[51]

S. S. Rodrigues and K. Sturm, On the explicit feedback stabilisation of one-dimensional linear nonautonomous parabolic equations via oblique projections, IMA J. Math. Control Inform., (2018). doi: 10.1093/imamci/dny045.  Google Scholar

[52]

D. L. Russell, Controllability and stabilizability theory for linear partial differential equations: Recent progress and open questions, SIAM Rev., 20 (1978), 639-739.  doi: 10.1137/1020095.  Google Scholar

[53]

D. L. Russell and B. Y. Zhang, Exact controllability and stabilizability of the Korteweg-de Vries equation, Trans. Amer. Math. Soc., 348 (1996), 3643-3672.  doi: 10.1090/S0002-9947-96-01672-8.  Google Scholar

[54]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Second edition. Applied Mathematical Sciences, 68. Springer-Verlag, New York, 1997. doi: 10.1007/978-1-4612-0645-3.  Google Scholar

[55]

R. Temam, Navier-Stokes Equations: Theory and Numerical Analysis, Reprint of the 1984 edition. AMS Chelsea Publishing, Providence, RI, 2001. doi: 10.1090/chel/343.  Google Scholar

[56]

M. Y. Wu, A note on stability of linear time-varying systems, IEEE Trans. Automat. Control, AC-19 (1974), 162. doi: 10.1109/tac.1974.1100529.  Google Scholar

[57]

M. Yamamoto, Carleman estimates for parabolic equations and applications, Inverse Problems, 25 (2009), 75 pp. doi: 10.1088/0266-5611/25/12/123013.  Google Scholar

[58]

W. H. Young, On classes of summable functions and their Fourier series, Proc. R. Soc. Lond., 87 (1912), 225-229.  doi: 10.1098/rspa.1912.0076.  Google Scholar

Figure 1.  Uncontrolled solutions. Linear and nonlinear systems
Figure 2.  Linear systems and linear feedback
Figure 3.  Nonlinear systems and linear feedback
Figure 4.  Nonlinear systems and nonlinear feedback
Figure 5.  Nonlinear systems and nonlinear feedback. Bigger initial condition
Figure 6.  Nonlinear systems and nonlinear feedback. Increasing the number of actuators
Figure 7.  Nonlinear systems and linear feedback. Increasing the number of actuators
Figure 8.  Nonlinear systems and nonlinear feedback. $ y(0) = c_{\rm ic}\sin(8\pi x)\in E_{ {\mathbb M}_\sigma}^\perp $
[1]

Duy Phan, Lassi Paunonen. Finite-dimensional controllers for robust regulation of boundary control systems. Mathematical Control & Related Fields, 2021, 11 (1) : 95-117. doi: 10.3934/mcrf.2020029

[2]

Guoliang Zhang, Shaoqin Zheng, Tao Xiong. A conservative semi-Lagrangian finite difference WENO scheme based on exponential integrator for one-dimensional scalar nonlinear hyperbolic equations. Electronic Research Archive, 2021, 29 (1) : 1819-1839. doi: 10.3934/era.2020093

[3]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[4]

Wenjun Liu, Hefeng Zhuang. Global attractor for a suspension bridge problem with a nonlinear delay term in the internal feedback. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 907-942. doi: 10.3934/dcdsb.2020147

[5]

Vo Van Au, Hossein Jafari, Zakia Hammouch, Nguyen Huy Tuan. On a final value problem for a nonlinear fractional pseudo-parabolic equation. Electronic Research Archive, 2021, 29 (1) : 1709-1734. doi: 10.3934/era.2020088

[6]

Divine Wanduku. Finite- and multi-dimensional state representations and some fundamental asymptotic properties of a family of nonlinear multi-population models for HIV/AIDS with ART treatment and distributed delays. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021005

[7]

Michiel Bertsch, Danielle Hilhorst, Hirofumi Izuhara, Masayasu Mimura, Tohru Wakasa. A nonlinear parabolic-hyperbolic system for contact inhibition and a degenerate parabolic fisher kpp equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3117-3142. doi: 10.3934/dcds.2019226

[8]

Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020108

[9]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[10]

Xiu Ye, Shangyou Zhang, Peng Zhu. A weak Galerkin finite element method for nonlinear conservation laws. Electronic Research Archive, 2021, 29 (1) : 1897-1923. doi: 10.3934/era.2020097

[11]

Vo Van Au, Mokhtar Kirane, Nguyen Huy Tuan. On a terminal value problem for a system of parabolic equations with nonlinear-nonlocal diffusion terms. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1579-1613. doi: 10.3934/dcdsb.2020174

[12]

Andrew Comech, Scipio Cuccagna. On asymptotic stability of ground states of some systems of nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1225-1270. doi: 10.3934/dcds.2020316

[13]

Amira M. Boughoufala, Ahmed Y. Abdallah. Attractors for FitzHugh-Nagumo lattice systems with almost periodic nonlinear parts. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1549-1563. doi: 10.3934/dcdsb.2020172

[14]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[15]

Yubiao Liu, Chunguo Zhang, Tehuan Chen. Stabilization of 2-d Mindlin-Timoshenko plates with localized acoustic boundary feedback. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021006

[16]

Guangjun Shen, Xueying Wu, Xiuwei Yin. Stabilization of stochastic differential equations driven by G-Lévy process with discrete-time feedback control. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 755-774. doi: 10.3934/dcdsb.2020133

[17]

Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020379

[18]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[19]

Jonathan J. Wylie, Robert M. Miura, Huaxiong Huang. Systems of coupled diffusion equations with degenerate nonlinear source terms: Linear stability and traveling waves. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 561-569. doi: 10.3934/dcds.2009.23.561

[20]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

2019 Impact Factor: 0.953

Metrics

  • PDF downloads (135)
  • HTML views (435)
  • Cited by (0)

Other articles
by authors

[Back to Top]